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A Common Problem

Unknown
state of world ™ _
Decoding:
Inference, learning
(Noisy) .
encoding X =R MRS )
Ob\ggl;%)[ions

Can we recover a high-dimensional X from a low-dimensional Y?

Yes, if:
X is structured; e.g., sparse (few Xi# 0) or compressible (few large Xi)

encoding preserves information about X

Examples:
Sparse signal recovery (compressed sensing, rare-event diagnosis)

Sparse model learning



Example 1: Diagnosis in Computer Networks

Probe (Beygelzimer, Kephart and Rish 2007)
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m Model: y=Ax+noise
m Problem structure: Xis nearly sparse - small number of large delays

m Task: find bottlenecks (extremely slow links) using probes (M << N)

Recover sparse state ('signal’) X from noisy linear observations




Example 2: Sparse Model Learning from fMRI Data

m Data: high-dimensional, small-sample
10,000 - 100,000 variables (voxels)

100s of samples (time points, or TRS)

m Task: given fMRI, predict mental states

emotional: angry, happy, anxious, etc.

cognitive: reading a sentence vs viewing an image

mental disorders (schizophrenia, autism, etc.)

m |ssues:
Overfitting: can we learn a predictive model that generalizes well?

Interpretability: can we identify brain areas predictive of mental states?

fMRI image courtesy of fMRI Research Center @ Columbia University



Sparse Statistical Models: Prediction + Interpretability

Data
X = fMRI voxels,

Predictive Model

= f(x
y = mental state y ( )
Small number + happy )
of Predictive |®=) + — - -
Variables ? sad

m Sparsity === variable selection === model interpretability

m Sparsity === regularization === less overfitting / better prediction




Sparse Linear Regression

4 Y = AX _+ noise A

Measurements: fMRI data (“encoding’) Unknown
mental states, behavior, rows — samples (~500) parameters
tasks or stimuli Columns — voxels (~30,000) (‘signal’)
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Find small number of most relevant voxels (brain areas)

fMRI activation image and time-course courtesy of Steve Smith, FMRIB



Sparse Recovery in a Nutshell

0
y A m X
_ X
i J -
noiseless design . \

observations (measurement) sparse input
matrix

Can we recover a sparse input efficiently
from a small number of measurements?



Sparse Recovery in a Nutshell

0
0 X
y A ]
_ X
M { o m | >N dimensions
K nonzeros
| ]
J

" Compressed Sensing Surprise”:

Given random A (i.i.d. Gaussian entries), x° can be reconstructed
exactly (with high probability):

m fromjust M = O(K log(N/K)) measurements

m efficiently - by solving convex problem min ||x||4 s.t. y = Ax
X (<& linear program)



Sparse Recovery in a Nutshell

% A m~

. X
M { o m ] >N dimensions

K nonzeros

J

In general, if A is good” (e.g., satisfies Restricted Isometry Property
with a proper constant), sparse x© can be reconstructed with M <<N
measurements by solving (linear program):

min ||x||1 S.t. ¥ = Ax
X



Sparse Recovery in a Nutshell

y y° A o X

i <I: :mxl

observations noiseless design
observations (measurement)
matrix I

sparse input

And what if there is noise in observations?



Sparse Recovery in a Nutshell

y y° A o X’
;- = g
||

Still, can reconstruct the input accurately (in l12-sense), for A
satisfying RIP; just solve a noisy version of our [1-optimization:

min [x||s s.t. |ly — Ax|} < ¢

I

min ||y — AX||§ S.t. ||x||1 <t (Basis Pursuit, aka Lasso)
X



Sparse Linear Regression vs Sparse Signal Recovery

m Both solve the same optimization problem
m Both share efficient algorithms and theoretical results

m However, sparse learning setting is more challenging:

m We do not design the “design” matrix, but rather deal with
the given data

m Thus, nice matrix properties may not be satisfied
(and they are hard to test on a given matrix, anyway)

m We don’t really know the ground truth (" "signal”) — but
rather assume it is sparse (to interpret and to regularize)

m Sparse learning includes a wide range of problems beyond
sparse linear regression (part 2 of this tutorial)
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Motivation: Variable Selection

e Filter methods:
rank each x; (or a small subset of X) using a ranking function r(/),
such as correlation or mutual information with the response y.
Fast but suboptimal - can miss multivariate predictive patterns.

o Wrapper methods:
rank each x; (or a small subset of X) by its predictive accuracy,
l.e., train a separate model for each x; and evaluate its accuracy.
Wrappers yield better predictions, but are quite expensive.

| Embedded methods:
variable selection is embedded in model learning.
(E.qg., via greedy methods or certain regularization techniques).




Model Selection as Regularized Optimization

Regularization constrains the model space to avoid overfitting:
minL(Z,3) s.t R(3)<t
5]

)
mcjin L(Z,3)+ AR(3)

e Z={Z",..,Z"} - data (e.9., Z' = (Xi.), ¥i))
e (3 - vector of model parameters
e [(-)-loss function (e.g., model’s error on the data)

e R(-) - regularization penalty (e.g., model's complexity)

e ) -regularization parameter



Bayesian Interpretation: MAP Estimation

e Loss: negative log-likelinood
o Regularization: negative log-prior on model parameters

e Learning: maximum a posteriori (MAP) probability estimation

Z|B)P(3|N)

arg max log P(
)
arg m;n —log P(Z

)
arg mcgn L(Z,5)+ R(5.\)

3)—log P(3|\)



Best Subset Selection

e find best subset of M predictors, i.e.

mqin L(Z,3) s.t.||3o <M

Bi # 0}

where -norm || 3||o is the number of nonzeros |{/

e NP-hard problem!

e various approximations (mainly greedy):

forward stepwise regression < Orthogonal Matching Pursuit (Mallat and Zhang, 1993)
stagewise OMP (StOMP) (Donoho et al., 2006)

regularized OMP (ROMP) (Needell and Vershynin, 2009)

subspace pursuits (Dai and Milenkovic, 2008)

CoSaMP (Needell and Tropp, 2008)

SAMP (Do et al., 2008)

GraDeS (Gradient Descent with Sparsification) (Garg and Khandekar, 2009), etc. etc.

see more at http://dsp.rice.edu/cs (Compressive Sensing Resources)

e Alternative approach:
l1-norm relaxations of fy (or, more generally, /;-norms, 0 < g < 1)



What is special about l1-norm? Sparsity + Computational Efficiency

lg-norm constraints for different values of g

qg = 0.1
|

q =4 q =2 qg=1 qg—= 0.5
| | | |
| | | |

Convexity = efficient optimization methods

Sparsity = variable selection

e g < 1: convexity, but no sparsity (no “sharp edges”)
e g > 1: sparsity (sharp edges), but no convexity
e g = 1: sparsity and convexity

Image courtesy of [Hastie, Friedman and Tibshirani, 2009]



LASSO: Least Absolute Shrinkage and Selection Operator

2+ A8l

mﬁin||y—X,3

e First proposed by (Tibshirani, 1996)
e Known as Basis Pursuit (Chen et al., 1999) in signal processing

e Bayesian view: MAP estimation with:

- independent Gaussian observations y; ~ e~ 2/ ~X'?)° and
- independent Laplace parameters /3; ~ e~/

—lambda = 2
lambda=1
—Iambda=0.57

0.6-
0.5- B
0.4t g
0.3r g
0.2r B
01t g

o . ) )

-10 8 0 2 4 8 8 10

4 2

e Laplace prior enforces solution sparsity < variable selection



Equivalent Constrained Formulation: A Geometric View

3 stlgl <t

m@jnHy—X,B

P2

p<n p>n

unique OLS solution multiple OLS solutions /3 + :
3 =argming ||y — X33 ¥ € N(X) (null-space), y = X(3 + )



Algorithms

e Standard quadratic programming methods: too slow

e Least Angle Regression (LARS) (Efron et al., 2004):

much faster; moreover, produces the entire solution path (all
solutions for all values of the regularization parameter \) at the
cost of a single least-squares fit. Similar to homotopy
(continuation) method of (Osborne et al., 2000Db).

e Coordinate descent (Fu, 1998), (Daubechies et al., 2004),
(Friedman et al., 2007a), (Wu and Lange, 2008):

for fixed \, optimizes each parameter at a time; using
warm-starts, it can compute the solutions on a grid of A values
faster than LARS (however, the full path is NOT computed)

o Many other methods, including generalizations to other losses;
various software packages, e.g., see http://dsp.rice.edu/cs



Geometric View of LARS

N X3

= X

At step k, LARS estimate ;ix moves towards the current OLS estimate
Y« in the direction ux equiangular among the current predictors.

The direction changes before reaching y, when a new variable enters
the active set.

Image courtesy of [Hastie, 2007]



Predictive Performance

Three scenarios (Tibshirani, 1996):

Best Subset | Ridge | Lasso
a few large g, best worst 2nd
medium number of moderate 3, worst 2nd best
large number of small j3; worst best 2nd
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Model Selection Consistency of LASSO

e Let X5 be the columns of the nonzero variables in the true model
(support), and let Xsc be the remaining columns (complement)

e (Strong) Irrepresentability condition for model selection (Zhao and Yu,
2006a; Yuan and Lin, 2007b; Zou, 2006; Wainwright, 2009b)

(X4 Xs) "X Xsc|loo <1 —¢, forsome 0 < e<1

states that the least-squares regression coefficients (i.e., correlations)
for the non-essential variables (Xsc columns) on support variables in X

must not be large.

e Relaxing the consistency conditions via Lasso modifications:

e bootstrap Lasso (BOLASSO) Bach (2008a) and stability-selection
(Meinshausen and Buehlmann, 2008) use bootstrap approach: learn
multiple Lasso models on data subsets, and then include the
intersection of nonzeros (Bach, 2008a) or only frequent-enough
nonzeros (Meinshausen and Buehlmann, 2008). This gets rid of
“unstable” variables and improves the model-selection consistency and
stability to the choice of A parameter.
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Beyond LASSO

Loss(X) + A||X]|

Other likelihoods Adding structure
(loss functions) beyond sparsity
m Generalized Linear Models m Elastic Net

(exponential family noise) m Fused Lasso

m Block l1-lg norms:
m  Multivariate Gaussians group Lasso

(Gaussian MRFs) simultaneous Lasso




Some Limitations of LASSO

e selects at most n variables when p > n (Osborne et al., 2000)
(but what if more predictors are relevant?)

e does not group correlated variables (Zou and Hastie, 2005):
- even if X; = X;, has many solutions with 3; # 3,
- tends to select one variable out of a group of correlated ones

Truth LASSO

relevant
cluster of
correlated
predictors

5®
O@;



Elastic Net (Zou and Hastie, 2005)

5+ M5+ X253

5 = arg min ||y — X5

lasso penalty d - Rage Elastic Net penalty:
)\1 > O, )\2: O . —— Elastic Net

al|8l5 + (1 — @)l 8]]1.
A2

where a =
“ Ao + \q

e /1 keeps singularities at vertices = sparsity
e |> enforces strictly convex edges = grouping effect
e /> removes the limitation on the number of selected variables

NOTE: to eliminate “double-shrinkage”, Elastic Net computes a re-scaled version (1 + )\2)3 of the above naive EN estimate /3



Example: Application to fMRI Analysis

Pittsburgh Brain Activity Interpretation Competition (PBAIC-07):

m subjects playing a videogame in a scanner

m 24 continuous response variables, e.g.
Annoyance

Sadness

Anxiety

Dog

Faces

Instructions

Correct hits

Goal: predict responses from fMRI data

TR T T O N

uhu TIRTLQ WilES) ...um TP R nll\num il hlumluxi
my lel "\nﬂuwmnqvvv'vw "yuqyurw

< 17 minutes >




Grouping Effect on PBAIC data

(Carroll, Cecchi, Rish, Garg, Rao 2009)

Predicting ‘Instructions’ (auditory stimulus)

Small grouping effect: %, = 0.1 Larger grouping effect: A, = 2.0

Higher A,— selection of more voxels from correlated clusters —
larger, more spatially coherent clusters



Grouping Tends to Improve Model Stability

(Carroll, Cecchi, Rish, Garg, Rao 2009)

Stability is measured here by average % overlap between models for 2 runs by same subject

AnnoyedAngr j-’ — .
Arons ] Be——
B Dd}’h—
Ir DogVisible
Dog
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Feartul Anxious

| =-
Fruit=Ve ctublcarr I '
L EN0.1 ender
—
_

DEN 2.0 I{LtE.FJ.'IJLtE.

HitzPeople
HitsWeapons
Hits
Instructions

IntederExterior ;
ReadSign |
SearchFruit
ScamchPeople
SearchWeapons
WRFixation

Instructions  VRFixation Velocity :: "ll '”’;ch'_'
Regression Method W coclly

caponsTools

o
R

Test Correl.
<
+

r

S
S

r

5 10 15
Voxels Common to Both Runs (%)

Among almost equally predictive models,

=

Increasing A, can significantly improve model stability



Another Application: Sparse Models of Pain Perception from fMRI

Predicting pain ratings from fMRI in presence of thermal pain stimulus
(Rish, Cecchi, Baliki, Apkarian, BI-2010)

Pain Prediction

0.8
Best prediction
) N
for higher Az I S R
0.75

> O

(&) wn

£ s

S S 0.7

S o

c 2

O Cc

= B et AJ

5 =

T =

£ 9 —oOLS

O = lambda2=0.1
-B-lambda2=1 |
—>&lambda2=5
—-©-lambda2=10

0.55
1500

number of voxels

Including more correlated voxels (increasing A,)
often improves the prediction accuracy as well



Fused Lasso (Tibshirani et al., 2005)

e EN smoothes coefficients uniformly
e But what if there is a natural ordering of the predictors?

e Fused Lasso encourages smoothness along such ordering
(besides sparsity):
p—1
’% + A\ ’ U’ ’1 + A7 Z ’,.-‘f'i'.j)f+1 — ’)),’

A

min — X
) ly — X

32

Image courtesy of [Tibshirani et al, 2005]



Group Lasso (Yuan and Lin, 2006)

e What if there is a natural group structure among the variables?

e functional clusters of genes, or brain voxels
e categorical variables encoded by groups of indicator variables
e multi-task learning: parameters for same feature across all tasks

e Block /4-I, penalty selects groups of variables from G = UL G;,
a partition of {1, ..., p}:

/1 promotes sparsity between the groups,
I, discourages sparsity within the groups:

K
minly — XI5+ A 19l
=1



Multi-Task (Simultaneous) Variable Selection

e Select a common subset of variables for k problems

e Example: joint feature selection for character-recognition problems for
multiple writers (Obozinski et al., 2010); variables: pixels or strokes

The letter “a"written by 40 different people Samples of the letters s and g for one writer

AARARRRDARARNCALAR AR A AP dagkordlldiodna
nasdd~O0ARLAROGAraeQOl JAldedolcagbfanaaan
apgeadeaQindddcacadeal lafdodaceeagdffunaans
sacadabldadhadacoadon JalhAvfanvaan@pdincana
AmrﬁﬂHGD§ﬂa&ﬂﬂmLﬂdhﬁ&aﬂﬂamﬂmhhtmﬂahmaqmn

aacrdniidadffidanaafollidhdofdonccfofabndan
poaadaaljhddioncagfanfJoadeciaanagdfandaan

paap2RGadndfffoacdadal JAdcaadannagd(lianaaan .
corRgeJdaadjofndadd shpandosca@pvranodus S EI:‘ 5 E",l:l 5 ::I

aapadnOliaalfilucadartl fafofracofihdsalan

casranNidacRa0ar{lafot anaafaas a@d soaee
cacadddioneiffoandiftan Andogoan aflf nodxa 5 E g g 5‘ % ? %
Afa

s Ma A=l TAAAARn s AR A Ma e L N g I

e Group-Lasso approach: groups < same-variable coefficients across
tasks (Obozinski et al., 2010, 2009; Liu et al., 2009b)



Beyond Lasso: General Log-likelihood Losses

Loss(X) + A||X]|
l

—log /T(y\x) + Aflx][-

/1. Gaussian < Lasso \

2. Bernoulli < logistic regression

3. Exponential-family < Generalized Linear Models
(includes 1 and 2)

\\4. Multivariate Gaussian < Gaussian MRFs /

li-regularized M-estimators



Markov Networks (Markov Random Fields)

X=1{Xi,..X,}, G=(V,E)

PX)=5 ] ®c(Xc) () T~

CeCliques -_\ NI
r/-- i

Lack of edge (i.j) — \ )
conditional independence X; L X;|rest o

Gaussian Markov Networks (GMRFs):

e P(x) = (27)" = det(X) 2 exp (—5(x — p)TZ 7' (x — p))

e Y - covariance matrix, X~ - precision (concentration) matrix

Zeros in X: marginal independence

Zeros in ¥~ < conditional independence < lack of edge
(Lauritzen, 1996)

e Sparse ¥~ ' < sparse Markov network



Sparse Matrix Factorization

e Dictionary learning

(Elad and Aharon, 2006; Raina et al., 2007; Mairal et al., 2009):

T

X U V

0
Q
o
g{ ~ e
& [ ]
C
" 1
p variables sparse representation

sparse U(i, :) < sparse representation in dictionary

J

e Sparse PCA (Zou et al., 2006; d’Aspremont et al.,
sparse V(:,j) (loadings/coordinates of components) — interpretability

e other sparse matrix factorization methods:

>

(72}
| .
O —~
-
(@)
()
>
£
n
©
O
S
4

(dictionary)

2007):

n
; _ T2 P
min [[X = UVT[2 + 2 11UG )l

i=1

=1..m V(. j)ll2 <1

sparse CCA (Sriperumbudur et al., 2009; Hardoon and Shawe-Taylor,
2008), sparse NMF (Hoyer, 2004), with applications to blind-source

separation and diagnosis (Chandalia and Rish, 2007)




From Variable Selection to Variable Construction

Supervised Dimensionality Reduction (SDR):

Assume there is an inherent low-dimensional
structure in the data that is predictive about
the target Y

Learn a predictor (mapping from U to Y)
simultaneously with dimensionality reduction

ldea: dimensionality reduction (DR) guided by
the class label may result into better predictive
features than the unsupervised DR



Supervised DR Outperforms Unsupervised DR on Simulated Data

0.7 T T T

Generate a separable 2-D igilnsi'fg'rf_ss%i
dataset U °81 - - - | ogistic-UDR

_ | =+—SVM-UDR

: : : O os} SVM ik

Blow-up in D dimensional data 5 e
X by adding exponential-family = o4
noise (e.g., Bernoulli) =

3

5 7
Compare SDR w/ different S
noise models (Gaussian, o %
Bernoulli) vs. unsupervised DR
(UDR) followed by SVM or U 1
logistic regression = a/)

Y 1 I i L ww | |
Jvb 3wb 40 s00 600 700 800 900 1000

D (data dimensionality)

m  SDR outperforms unsupervised DR by 20-45%
m  Using proper data model (e.g., Bernoulli-SDR for binary data) matters

m  SDR ""gets” the structure (0% error), SVM does not (20% error)




...and on Real-Life Data from fMRI Experiments

Real-valued data, Classification Task
Predict the type of word (tools or buildings) the subject is seeing
84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

method\ L 5 10 15 20 25
Gaussian-SDR | 0211 0.26 | 0.23 |[[0.20 ] 0.23
Logistic-UDR | 0.44 | 0.42 |[0.29 | 030 | 0.26

SVM-UDR 0.49 | 0.52 | 0.56 0.57 | 0.55

SVDM 0.32 | 0.25 |L0.21 || 0.23 | 0.23
SVM 0.21

Gaussian-SDR achieves overall best performance
SDR matches SVM'’s performance using only 5 dimensions, while SVDM needs 15

SDR greatly outperforms unsupervised DR followed by learning a classifier




Summary and Open Issues

- Common problem: small-sample, high-dimensional inference

7 Feasible if the input is structured — e.g. sparse in some basis

N Efficient recovery of sparse input via |1- relaxation

O Sparse modeling with I1-regularization: interpretability + prediction

r Beyond l1-regularization: adding more structure

0 Beyond Lasso: M-estimators, dictionary learning, variable construction
N Open issues, still:

choice of regularization parameter?
choice of proper dictionary?

Is interpretability < sparsity? (NO!)
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Beyond LASSO

Loss(X) + A||X]|

Other likelihoods Adding structure
(loss functions) beyond sparsity
m Generalized Linear Models m Elastic Net
(exponential family noise) m Fused Lasso
m Block I1-lg norms:
m  Multivariate Gaussians group Lasso
(Gaussian MRFs) simultaneous Lasso




Why Exponential Family Loss?

m Network Management — Problem Diagnosis:
1 binary failures - Bernoulli g
1 non-negative delays — exponential

DB T
SerV \
=8 LT

m Collaborative prediction: b obing station
1 discrete rankings - multinomial

m  DNA microarray data analysis:
1 Real-valued expression level — Gaussian

m fMRI data analysis
1 Real-valued voxel intensities, binary, nominal and continuous responses

Variety of data types: real-valued, binary, nominal, non-negative, etc.

uys

Noise model: exponential-family




Exponential Family Distributions

natural base
parameter measure

log pye(Y) = _ + 09 @
T

log-partition function

Examples: Gaussian, exponential, Bernoulli, multinomial,
gamma, chi-square, beta, Weibull, Dirichlet, Poisson, etc.



Generalized Linear Models (GLMs)

EP?;:,U (y) — f_1 (AX)

f(0) - link function, where f=1(0) = V) (6)

1. Gaussian noise - identity function (1) = u (linear regression):

E(y) = AX

2. Bernoulli noise - logit function () = log 1i—ﬂu (logistic regression)

1




Exponential Family, GLMs, and Bregman Divergences

Bijection Theorem (Banerjee et al, 2005):

p?*e(y) — e_d()(y’u(g))f@(y)

\ Bregman divergence

Domain Distribution Divergence
R 1D Gaussian square loss
{0,1} Bernoulli logistic loss
R, Exponential ltakura-Saito distance
n-simplex nD Multinomial KL-divergence
R" nD Sph. Gaussian | squared Euclidean distance
R" nD Gaussian Mahalanobis distance

Fitting GLM & maximizing exp-family likelihood <~
& minimizing Bregman divergence



Sparse Signal Recovery from Noisy Observations

Euclidean distance (Candes, Romberg and Tao, 2006):

If
e small observation noise: ||y — Ax%||, < e
o A satisfies the restricted isometry property (RIP)

Then the solution to the sparse linear regression problem

x* = arg mxin x|, st ||y —Ax]||, <e

is a good approximation of x°, i.e. ||x* — x°||;, < Cs - e.

4

Generalized Linear Models: (Rish and Grabarnik, 2009)

replace Euclidean distances ||y — Ax°||, and ||y — Ax||, by the
corresponding Bregman divergences d(y, ;/(Ax®)) and d(y, 1(Ax)).




Sparse Signal Recovery with Exponential-Family Noise

/ \

y Py (Y10) v A m X
i <I: - ﬁlnl "
I noise | !

observations natural design matrix
parameters

|

sparse signal

Can we recover a sparse signal
from a small number of noisy observations?



Sufficient Conditions (Rish and Grabarnik, 2009)

1

Noise is small:
dﬁbé (yla/vL(A'L,JjO)) < €

l
Po; (yf)

A A A

4

E <
s
|

bounded @; " (y)

2 3
Restricted Isometry S-sparse
Property (RIP) [1X°]]1 <'s
} | ;
A o X
i J [ ]
[ ]

Then the solution x* to the sparse GLM regression problem
min||x||; subject to Y " d(yi. u(Aix)) < e

j
is a good approximation of x°, i.e. ||x* — x°||, < Cs - d(¢)

§(¢€) - continuous monotone increasing function, and §(0) = 0 (i.e. d(¢) is small when ¢ is small).

*otherwise, different proofs for some specific cases (e.g., Bernoulli, exponential, etc. )



Summary

e sparse signal recovery (Candes, Romberg & Tao, 2006) can be
extended from linear to generalized linear models
(exponential-family observation noise)

e signal recovery requires solving an /i-regularized Generalized
Linear Model (GLM) regression problem

e recovery conditions include, besides standard RIP for design
matrix:
(1) small noise (Bregman divergence) d;(y;, ji(Ai. x°)) < e
(2) certain conditions on ¢

e results also hold for compressible (rather than sparse) signals




Beyond LASSO

Loss(x) + A||x||1

Other likelihoods Adding structure
(loss functions) beyond sparsity
m Generalized Linear Models m Elastic Net

(exponential family noise) m Fused Lasso

m Block I1-lg norms:
m  Multivariate Gaussians group Lasso

(Gaussian MRFs) simultaneous Lasso




Markov Networks (Markov Random Fields)

X=1{Xi,..X,}, G=(V,E)

PX)=5 ] ®c(Xc) () T~

CeCliques -_\ NI
r/-- i

Lack of edge (i.j) — \ )
conditional independence X; L X;|rest o

Gaussian Markov Networks (GMRFs):

e P(x) = (27)" = det(X) 2 exp (—5(x — p)TZ 7' (x — p))

e Y - covariance matrix, X~ - precision (concentration) matrix

Zeros in X: marginal independence

Zeros in ¥~ < conditional independence < lack of edge
(Lauritzen, 1996)

e Sparse ¥~ ' < sparse Markov network



Sparse Markov Networks in Practical Applications

m Social Networks

1 US senate voting data (Banerjee et al, 2008):
democrats (blue) and republicans (red)

m Genetic Networks V. e
1 Rosetta Inpharmatics Compendium of gene expression - - B i
profiles (Banerjee et al, 2008) = AN

m Brain Networks from fMRI

1 Monetary reward task (Honorio et al., 2009)

1 Drug addicts more connections in cerebellum
( ) vs control subjects (more connections
In prefrontal cortex — green)

(a) Drug addicts (b) controls



Sparse MRFs Can Predict Well

Classifying Schizophrenia
(Cecchi et al., 2009)

86% accuracy

0.8

0.5

classification error

DB oo e e

D4 e e

== MRF (0.1): degree (long—distance)
—8— GNB: degree (long—distance)
—&— SVM:degree (long-distance)

0.1

L 1 1 1 1
50 100 150 200 250 300

K top voxels (ttest)

Mental state prediction
(sentence vs picture)*:

(Scheinberg and Rish, submitted)
90% accuracy

0.5

——sparse MRF (1.0)
oasf -~ .. . | —B—error I

classification error
2 o R e § e
[4,] N (4] w (4,1 FS

o
o

0.05[ -

0 L L L L L L L
0 50 100 150 200 250 300 350 400

K top voxels (ttest)

MRF classifiers can often exploit informative interactions among
variables and often outperform state-of-art linear classifiers (e.g., SVM)

*Data @ www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/ from T. Mitchell et al., Learning to Decode Cognitive States from Brain Images,

Machine Learning, 2004.


http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

Network Properties as BioMarkers (Predictive Features)

Discriminative Network Models of Schizophrenia (Cecchi et al., 2009)

- Voxel degrees in functional networks (thresholded covariance matrices) are

statistically significantly different in schizophrenic patients that appear to lack
“hubs” in auditory/language areas

FDR-corrected Degree Maps

2-sample t-test performed for each voxel in
degree maps, followed by FDR correction

Red/yellow: Normal subjects have higher
values than Schizophrenics

Also, abnormal MRF connectivity observed in Alzheimer’s patients (Huang 2009),
in drug addicts (Honorio 2009), etc.




Maximum Likelihood Estimation

Assume the data X are centered to have zero mean. Then:

A

> 1 = argmaxlog p(C|X) = argmaxlog p(X, C) =
C>0 C>0

= argmaxlogdet(C) — tr(SC)
C>0

where S = 1N Zf\; x! x; is the empirical covariance matrix (MLE of ¥)

Why not justuse ¥—1 = S—17?

e in small-sample case (n < p), S may not be even invertible
e even ifitis, S~ ' almost never contains exact zeros

e /{-regularization takes care of both issues!



Solving Primal Problem Directly

1. Greedy coordinate ascent approach: SINCO (Scheinberg et al., 2009)

® updates one diagonal or two (symmetric) off-diagonal elements of C at each step
® evaluating each Cj takes constant time (solving quadratic equation),
thus each step takes O(p?) time and can be easily parallelized

® naturally preserves the sparsity of a solution; can reduce false-positive error
by not including “weak” edges not contributing much to the objective

® Speedwise, comparable to glasso; outperforms glasso on large-scale problems

(a) Random (b) Scale-free

CPU time comparison: SINCO vs glasso on (a) random networks (N = 500,
fixed range of A) and (b) scale-free networks (density 21%. N and A scaled by the same
factor with p, ¥ = 500 for p = 100).

2. (Honorio et al., 2009) also solve the primal problem:
® Optimize over each column (node) at a time

® Exploit “local constancy” structure adding a regularizer similar to fused Lasso



Additional Related Work

e (Yuan and Lin, 2007) solve the primal problem (1) using interior-point
method for the maxdet problem (Vandenberghe et al., 1998)

e (Lee et al., 2007) learn MRFs using clique selection heuristic and
approximate inference

e (Wainwright et al., 2007) extend the approach of (Meinshausen and
Buhlmann, 2006) to binary MRFs Ising models, applying sparse logistic
regression at each node, and derive asymptotic consistency results

e (Schmidt et al., 2007) apply /-regularization to structure learning in
Bayesian networks

e (Huang et al., 2009) prove the monotone property of (1) under
decreasing A (i.e., connected nodes stay connected with decreasing
sparsity levels)

e (Lin et al., 2009) propose an alternative approach based on
ensemble-of-trees that is shown to sometimes outperform
l;-reqularization approaches of (Banerjee et al., 2008) and (Wainwright
et al., 2007)

e (Schmidt and Murphy, 2010) learn log-linear models with higher-order
(beyond pairwise) potentials; use group-/; regularization with
overlapping groups to enforce hierarchical structure over potentials



Selecting the Proper Regularization Parameter

“...the general issue of selecting a proper amount of regularization for getting a
right-sized structure or model has largely remained a problem with unsatisfactory
solutions® (Meinshausen and Buehlmann , 2008)

“asymptotic considerations give little advice on how to choose a specific penalty
parameter for a given problem" (Meinshausen and Buehlmann , 2006)

m Bayesian Approach (N.Bani Asadi, K. Scheinberg and I. Rish, 2009)

Assume a Bayesian prior on the regularization parameter

Find maximum a posteriory probability (MAP) solution

m Result:

more ~"balanced” solution (False Positive vs False Negative error) than
m cross-validation - too dense, and
m theoretical (Meinshausen & Buehlmann 2006, Banerjee et al 2008) - too sparse

Does not require solving multiple optimization problems over data subsets as
compared to the stability selection approach (Meinshausen and Buehlmann 2008)



The Bayesian A
ROC Curve
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Outline

N Introduction
m Sparse Linear Regression: Lasso
0 Sparse Signal Recovery and Lasso: Some Theory

7 Sparse Modeling: Beyond Lasso
m Consistency-improving extensions
m Beyond li-regularization (11/lg, Elastic Net, fused Lasso)
n Beyond linear model (GLMs, MRFSs)
m  Sparse Matrix Factorizations

m Beyond variable-selection: variable construction

O Summary and Open Issues



Sparse Matrix Factorization

e Dictionary learning

(Elad and Aharon, 2006; Raina et al., 2007; Mairal et al., 2009):

T

X U V

0
Q
o
g{ ~ e
& [ ]
C
" 1
p variables sparse representation

sparse U(i, :) < sparse representation in dictionary

J

e Sparse PCA (Zou et al., 2006; d’Aspremont et al.,
sparse V(:,j) (loadings/coordinates of components) — interpretability

e other sparse matrix factorization methods:

>

(72}
| .
O —~
-
(@)
()
>
£
n
©
O
S
4

(dictionary)

2007):

n
; _ T2 P
min [[X = UVT[2 + 2 11UG )l

i=1

=1..m V(. j)ll2 <1

sparse CCA (Sriperumbudur et al., 2009; Hardoon and Shawe-Taylor,
2008), sparse NMF (Hoyer, 2004), with applications to blind-source

separation and diagnosis (Chandalia and Rish, 2007)
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m Beyond li-regularization (11/lq, Elastic Net, fused Lasso)
n Beyond linear model (GLMs, MRFSs)
n Sparse Matrix Factorizations

m Beyond variable-selection: variable construction

O Summary and Open Issues



From Variable Selection to Variable Construction

Supervised Dimensionality Reduction (SDR):

Assume there is an inherent low-dimensional
structure in the data that is predictive about
the target Y

Learn a predictor (mapping from U to Y)
simultaneously with dimensionality reduction

ldea: dimensionality reduction (DR) guided by
the class label may result into better predictive
features than the unsupervised DR



Example: SDR with Generalized Linear Models (Rish et al., 2008)

Generalized Linear Models (GLMs)
E(Xy) = ;' (UVy)
E(Yk) = fi ' (UWK)

E.g., in linear case, we have:
X~UV and Y~ UV



Supervised DR Outperforms Unsupervised DR on Simulated Data

0.7 T T T

Generate a separable 2-D igilnsi'fg'rf_ss%i
dataset U °81 - - - | ogistic-UDR

_ | =+—SVM-UDR

: : : O os} SVM ik

Blow-up in D dimensional data 5 e
X by adding exponential-family = o4
noise (e.g., Bernoulli) =

3

5 7
Compare SDR w/ different S
noise models (Gaussian, o %
Bernoulli) vs. unsupervised DR
(UDR) followed by SVM or U 1
logistic regression = a/)

Y 1 I i L ww | |
Jvb 3wb 40 s00 600 700 800 900 1000

D (data dimensionality)

m  SDR outperforms unsupervised DR by 20-45%
m  Using proper data model (e.g., Bernoulli-SDR for binary data) matters

m  SDR ""gets” the structure (0% error), SVM does not (20% error)




...and on Real-Life Data from fMRI Experiments

Real-valued data, Classification Task
Predict the type of word (tools or buildings) the subject is seeing
84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

method\ L 5 10 15 20 25
Gaussian-SDR | 0211 0.26 | 0.23 |[[0.20 ] 0.23
Logistic-UDR | 0.44 | 0.42 |[0.29 | 030 | 0.26

SVM-UDR 0.49 | 0.52 | 0.56 0.57 | 0.55

SVDM 0.32 | 0.25 |L0.21 || 0.23 | 0.23
SVM 0.21

Gaussian-SDR achieves overall best performance
SDR matches SVM'’s performance using only 5 dimensions, while SVDM needs 15

SDR greatly outperforms unsupervised DR followed by learning a classifier




Summary and Open Issues

- Common problem: small-sample, high-dimensional inference

7 Feasible if the input is structured — e.g. sparse in some basis

N Efficient recovery of sparse input via |1- relaxation

O Sparse modeling with I1-regularization: interpretability + prediction

r Beyond l1-regularization: adding more structure

0 Beyond Lasso: M-estimators, dictionary learning, variable construction
N Open issues, still:

choice of regularization parameter?
choice of proper dictionary?

Is interpretability < sparsity? (NO!)



Interpretability: Much More than Sparsity?

Data
X = fMRI voxels,

Predictive Model

y = f(x)
y = mental state
Interpretable v haopy
Predictive |&= + — - _-
Patterns sad
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