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Can we recover a high-dimensional X from a low-dimensional Y?

A Common Problem
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 encoding preserves information about X 

Examples: 

 Sparse signal recovery (compressed sensing, rare-event diagnosis)

 Sparse model learning

Yes, if:

 X is structured; e.g., sparse (few  Xi = 0 ) or compressible (few large Xi) /
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Example 1:  Diagnosis in Computer Networks

(Beygelzimer, Kephart and Rish 2007)

Recover sparse  state  (`signal’)  X  from noisy linear observations

 Problem structure:  X is nearly sparse  - small number of  large delays 

 Task: find bottlenecks (extremely slow links)  using probes  (M << N) 



 Data: high-dimensional, small-sample

 10,000 - 100,000  variables (voxels)

 100s of samples (time points, or TRs)

 Task: given fMRI, predict mental states

 emotional: angry, happy, anxious, etc.

 cognitive: reading a sentence vs viewing an image

 mental disorders (schizophrenia, autism, etc.)

fMRI  image courtesy of fMRI Research Center @ Columbia University

Example 2:  Sparse Model Learning from fMRI Data

 Issues:

 Overfitting: can we learn a predictive model that generalizes well?

 Interpretability: can we identify brain areas predictive of mental states?
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Sparse Statistical Models:  Prediction + Interpretability
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Data
Predictive Model  

y = f(x)
x - fMRI voxels, 

y - mental state

sad

happy

 Sparsity           variable selection      model  interpretability

 Sparsity           regularization            less overfitting / better prediction



Sparse Linear Regression    

y = Ax  +  noise

fMRI data (“encoding’)
rows – samples (~500)

Columns – voxels (~30,000)

Unknown

parameters

(‘signal’)

Measurements:
mental states, behavior,

tasks or stimuli

fMRI activation image and time-course courtesy of Steve Smith, FMRIB

Find small number of most relevant  voxels (brain areas)    
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Sparse Recovery in a Nutshell

Can we recover a sparse input efficiently

from a small number of measurements?

noiseless

observations sparse input



N dimensions

K nonzeros

M  

 from just                                         measurements

 efficiently - by solving convex problem  

( linear program)

``Compressed Sensing Surprise’’:

Given random A (i.i.d. Gaussian entries),        can be reconstructed 

exactly (with high probability):   

Sparse Recovery in a Nutshell



M  

In general,   if A  is ``good’’ (e.g., satisfies Restricted Isometry Property 

with a proper constant), sparse          can be reconstructed with M <<N

measurements by solving (linear program):

N dimensions

K nonzeros

Sparse Recovery in a Nutshell



sparse input

design

(measurement)

matrix

noise

noiseless

observations

observations

And what if there is noise in observations? 

Sparse Recovery in a Nutshell



Still, can reconstruct the input accurately (in l2-sense), for A 

satisfying RIP; just solve a noisy version of our l1-optimization:

(Basis Pursuit, aka Lasso)

Sparse Recovery in a Nutshell



Sparse Linear Regression vs Sparse Signal Recovery  

 Both solve the same optimization problem

 Both share efficient algorithms and theoretical results

 However, sparse learning setting is more challenging:

 We do not design the “design” matrix, but rather deal with  

the given data

 Thus, nice matrix properties may not be satisfied 

(and they are hard to test on a given matrix, anyway)

 We don’t really know the ground truth (``signal”) – but 

rather assume it is sparse  (to interpret and to regularize)  

 Sparse learning includes a wide range of problems beyond 

sparse linear regression (part 2 of this tutorial)
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Motivation: Variable Selection



Model Selection as Regularized Optimization



Bayesian Interpretation: MAP Estimation





lq-norm constraints for different values of q

Image  courtesy of  [Hastie, Friedman and Tibshirani, 2009]

What is special about  l1-norm?   Sparsity + Computational Efficiency









Geometric View of  LARS   

Image  courtesy of  [Hastie, 2007]
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Beyond LASSO

 Elastic Net 

 Fused Lasso

 Block l1-lq norms: 

 group Lasso

 simultaneous Lasso

Other likelihoods 

(loss functions) 

Adding structure

beyond sparsity

 Generalized Linear Models 

(exponential family noise)

 Multivariate Gaussians  

(Gaussian MRFs)



LASSOTruth

relevant

cluster of 

correlated 

predictors



ridge penalty

λ1 = 0, λ2> 0 

lasso penalty

λ1 > 0, λ2= 0

Elastic Net

penalty



 subjects playing a videogame in a scanner

17 minutes

Example:  Application to fMRI Analysis

Pittsburgh Brain Activity Interpretation Competition (PBAIC-07):

 24 continuous response variables, e.g.
• Annoyance

• Sadness

• Anxiety

• Dog

• Faces

• Instructions

• Correct hits

Goal:  predict responses from fMRI data



Higher λ
2
→ selection of more voxels from correlated  clusters →  

larger, more spatially coherent clusters

Small grouping effect: λ2 = 0.1 Larger grouping effect: λ2 = 2.0

Grouping Effect on PBAIC data

Predicting ‘Instructions’ (auditory stimulus) 

(Carroll, Cecchi, Rish, Garg, Rao 2009)



Among almost equally predictive models,

Grouping Tends to Improve Model Stability

Stability is measured here by average % overlap between models for 2 runs by same subject 

(Carroll, Cecchi, Rish, Garg, Rao 2009)

increasing λ
2

can significantly improve model stability  



Another Application:  Sparse Models of  Pain Perception from fMRI

Including more correlated voxels (increasing λ
2
) 

often improves the prediction accuracy as well

Predicting pain ratings from fMRI in presence of thermal pain stimulus   
(Rish, Cecchi, Baliki, Apkarian, BI-2010)
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Image  courtesy of  [Tibshirani et al, 2005]







Beyond Lasso: General Log-likelihood Losses

1.  Gaussian   Lasso

2.  Bernoulli  logistic regression

4.  Multivariate Gaussian  Gaussian MRFs

3.  Exponential-family  Generalized Linear Models

(includes 1 and 2)

l1-regularized  M-estimators



Markov Networks  (Markov Random Fields)



Sparse Matrix Factorization
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Supervised Dimensionality Reduction (SDR):

U1

X1 XD

YK

UL

Y1

…

…

…

From Variable Selection to Variable Construction 

 Learn a predictor (mapping from U to Y)  

simultaneously with dimensionality reduction 

 Assume there is an inherent low-dimensional

structure in the data that  is predictive about 

the target Y 

 Idea: dimensionality reduction (DR) guided by 

the class label may result into better predictive 

features than the unsupervised DR



 SDR outperforms unsupervised DR by 20-45%

 Using proper data model (e.g., Bernoulli-SDR for binary data) matters  

 SDR ``gets’’ the structure (0% error), SVM does not  (20% error)

Supervised DR Outperforms Unsupervised DR  on Simulated Data

 Generate a separable 2-D 

dataset U

 Blow-up in D dimensional data 

X by adding exponential-family 

noise (e.g., Bernoulli)

 Compare SDR w/ different 

noise models (Gaussian, 

Bernoulli)   vs. unsupervised DR 

(UDR) followed by SVM or 

logistic regression



Real-valued data, Classification Task 

Predict the type of word (tools or buildings) the subject is seeing

84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

 Gaussian-SDR achieves overall best performance

 SDR matches SVM’s performance using only 5 dimensions, while SVDM needs 15

 SDR greatly outperforms unsupervised DR followed by learning a classifier

…and on Real-Life Data from fMRI Experiments



Summary  and Open Issues

 Common problem: small-sample, high-dimensional inference

 Feasible if the input is structured – e.g. sparse in some basis

 Efficient recovery of sparse input via l1- relaxation

 Sparse modeling with  l1-regularization: interpretability  + prediction

 Beyond l1-regularization: adding more structure

 Beyond Lasso: M-estimators, dictionary learning, variable construction

 Open issues, still: 

 choice of  regularization parameter?  

 choice of proper dictionary?  

 Is interpretability  sparsity? (NO!)
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Beyond LASSO

 Elastic Net 

 Fused Lasso

 Block l1-lq norms: 

 group Lasso

 simultaneous Lasso

Other likelihoods 

(loss functions) 

Adding structure

beyond sparsity

 Generalized Linear Models 

(exponential family noise)

 Multivariate Gaussians  

(Gaussian MRFs)

 Generalized Linear Models 

(exponential family noise)

 Multivariate Gaussians  

(Gaussian MRFs)



Why Exponential Family Loss?  

 Network Management – Problem Diagnosis:  

 binary failures  - Bernoulli

 non-negative delays – exponential

Web

Server 

Hub

DB

Server 

Router

Probing station

Variety of data types: real-valued, binary, nominal, non-negative, etc.

Noise model: exponential-family

 Collaborative prediction:  

 discrete rankings - multinomial

 DNA microarray data analysis:

 Real-valued expression level – Gaussian

 fMRI data analysis

 Real-valued voxel intensities, binary, nominal and continuous responses



Exponential Family Distributions

natural

parameter

log-partition function

base 

measure

Examples:  Gaussian, exponential, Bernoulli, multinomial, 

gamma, chi-square, beta, Weibull, Dirichlet, Poisson, etc.



Generalized Linear Models (GLMs)



Exponential Family, GLMs, and Bregman Divergences    

Bijection Theorem (Banerjee et al, 2005):  

Fitting GLM  maximizing exp-family likelihood 

minimizing Bregman divergence

Bregman divergence



(Rish and Grabarnik, 2009)



sparse signal

design matrixnatural 

parameters

noise

observations

Sparse Signal Recovery with Exponential-Family Noise 

Can we recover a sparse signal 

from a small number of noisy observations?



Sufficient Conditions   

Noise is small:

1

Restricted Isometry 

Property (RIP)  

2

s-sparse 

3

*otherwise, different  proofs for some specific cases (e.g., Bernoulli, exponential, etc. )

bounded

4
*

(Rish and Grabarnik, 2009)





Beyond LASSO

 Elastic Net 

 Fused Lasso

 Block l1-lq norms: 

 group Lasso

 simultaneous Lasso

Other likelihoods 

(loss functions) 

Adding structure

beyond sparsity

 Generalized Linear Models 

(exponential family noise)

 Multivariate Gaussians  

(Gaussian MRFs)

 Generalized Linear Models 

(exponential family noise)

 Multivariate Gaussians  

(Gaussian MRFs)



Markov Networks  (Markov Random Fields)



 Social Networks

 US senate voting data (Banerjee et al, 2008):  

democrats (blue) and republicans (red)

Sparse Markov Networks in Practical Applications

 Genetic  Networks

 Rosetta Inpharmatics Compendium of gene expression 

profiles (Banerjee et al, 2008)

 Brain  Networks from fMRI

 Monetary reward task (Honorio et al., 2009)

 Drug addicts more connections in cerebellum 

(yellow) vs control subjects (more connections 

in prefrontal cortex – green)

(a) Drug addicts        (b) controls



Sparse MRFs Can Predict Well  

*Data @ www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/ from T. Mitchell et al., Learning to Decode Cognitive States from Brain Images,

Machine Learning, 2004.

Classifying Schizophrenia

(Cecchi et al., 2009)

86% accuracy

Mental state prediction 

(sentence vs picture)*:

(Scheinberg and Rish, submitted)

90% accuracy 

MRF classifiers can often  exploit informative interactions among 

variables and often outperform state-of-art linear classifiers (e.g., SVM)

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/


FDR-corrected Degree Maps

Network Properties as BioMarkers (Predictive Features)      

2-sample t-test performed  for each voxel in 

degree maps, followed by FDR correction

Red/yellow: Normal subjects have higher

values than Schizophrenics

- Voxel degrees in functional networks (thresholded covariance matrices) are 

statistically significantly different in schizophrenic patients that appear to lack 

“hubs” in auditory/language areas

Discriminative Network Models of Schizophrenia (Cecchi et al., 2009)

Also, abnormal MRF connectivity observed in  Alzheimer’s patients (Huang 2009), 

in drug addicts (Honorio 2009), etc.



Maximum Likelihood Estimation



Solving Primal Problem Directly

1.

2.



Additional Related Work 



 Bayesian Approach (N.Bani Asadi, K. Scheinberg and I. Rish, 2009)

 Assume a Bayesian prior on the regularization parameter

 Find maximum a posteriory probability (MAP) solution

Selecting the Proper Regularization Parameter

“…the general issue of selecting a proper amount of regularization for getting a 

right-sized structure or model has largely remained a problem with unsatisfactory 

solutions“   (Meinshausen and Buehlmann , 2008)

“asymptotic considerations give little advice on how to choose a specific penalty 

parameter for a given problem'‘ (Meinshausen and Buehlmann , 2006)

 Result:

 more ``balanced’’ solution (False Positive vs False Negative error)  than 

 cross-validation - too dense,  and 

 theoretical (Meinshausen & Buehlmann 2006, Banerjee et al 2008)  - too sparse

 Does not require solving multiple optimization problems over data subsets as 

compared to the stability selection approach (Meinshausen and Buehlmann 2008)





 Introduction

 Sparse Linear Regression: Lasso

 Sparse Signal Recovery and Lasso: Some Theory

 Sparse Modeling: Beyond Lasso

 Consistency-improving extensions

 Beyond l1-regularization (l1/lq, Elastic Net, fused Lasso)

 Beyond linear model (GLMs, MRFs)

 Sparse Matrix Factorizations

 Beyond variable-selection: variable construction 

 Summary and  Open Issues 

Outline



Sparse Matrix Factorization
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Supervised Dimensionality Reduction (SDR):

U1

X1 XD

YK

UL

Y1

…

…

…

From Variable Selection to Variable Construction 

 Learn a predictor (mapping from U to Y)  

simultaneously with dimensionality reduction 

 Assume there is an inherent low-dimensional

structure in the data that  is predictive about 

the target Y 

 Idea: dimensionality reduction (DR) guided by 

the class label may result into better predictive 

features than the unsupervised DR



Y1

U

YK…X1 XD…

V1

VD
Wk

W1

Example: SDR with Generalized Linear Models (Rish et al., 2008) 

E.g., in linear case, we have:  

X ~  U V    and    Y ~  U V



 SDR outperforms unsupervised DR by 20-45%

 Using proper data model (e.g., Bernoulli-SDR for binary data) matters  

 SDR ``gets’’ the structure (0% error), SVM does not  (20% error)

Supervised DR Outperforms Unsupervised DR  on Simulated Data

 Generate a separable 2-D 

dataset U

 Blow-up in D dimensional data 

X by adding exponential-family 

noise (e.g., Bernoulli)

 Compare SDR w/ different 

noise models (Gaussian, 

Bernoulli)   vs. unsupervised DR 

(UDR) followed by SVM or 

logistic regression



Real-valued data, Classification Task 

Predict the type of word (tools or buildings) the subject is seeing

84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

 Gaussian-SDR achieves overall best performance

 SDR matches SVM’s performance using only 5 dimensions, while SVDM needs 15

 SDR greatly outperforms unsupervised DR followed by learning a classifier

…and on Real-Life Data from fMRI Experiments



Summary  and Open Issues

 Common problem: small-sample, high-dimensional inference

 Feasible if the input is structured – e.g. sparse in some basis

 Efficient recovery of sparse input via l1- relaxation

 Sparse modeling with  l1-regularization: interpretability  + prediction

 Beyond l1-regularization: adding more structure

 Beyond Lasso: M-estimators, dictionary learning, variable construction

 Open issues, still: 

 choice of  regularization parameter?  

 choice of proper dictionary?  

 Is interpretability  sparsity? (NO!)



Interpretable

Predictive

Patterns

Interpretability:  Much More than Sparsity?
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Data
Predictive Model  

y = f(x)
x - fMRI voxels, 

y - mental state

sad

happy



References 



References 



References 



References 



References 



References 



References 



References 


