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Functional Magnetic Resonance Imaging (fMRI)
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Image courtesy of fMRI Research 
Center at Columbia University

• Blood-oxygen-level-dependent (BOLD) signal related to brain activity 

while subject performs some task in scanner

• 4D ‘brain movie’:   a sequence of  3D brain volumes 

3D voxels  ~ 3x3x3 mm,  time repetitions (TR) ~1-2s

• Challenge: high-dimensional, small-sample data

10,000 to 100,000 variables (voxels), but only 100s of TRs (samples), and less than 100 subjects



What are we looking for in fMRI data?

 Mainstream fMRI analysis objective:

discovering brain areas relevant to a mental state or a task

 But how to measure ‘relevance’?

 Ultimately: mutual information (but computationally intractable to evaluate on all voxel subsets)

 Simplest approximation: univariate (voxel-vise) correlations with the task (GLM approach)

But informative multivoxel patterns are often missed (Haxby et al, many other studies, this work)

 This work:  predictive accuracy of multivariate sparse models as a better proxy for relevance

 Questions: 

How is task-related information distributed in the brain?

Is there a sharp boundary between relevant vs. irrelevant brain areas?                                                 

Or is the information distribution through the brain almost ‘holographic’?



Feature Construction: 

- feature engineering (network properties etc.)
[Rish et al, PLoS One 2013, Cecchi et al, NIPS 2009]

[Rish et al, SPIE Med.Imaging 2012]

Feature Selection
[Carroll et al, Neuroimage 2009]

[Rish et al, Brain Informatics 2010]

[Rish et al, SPIE Med.Imaging 2012]

- automated feature extraction: 

dictionary learning, deep learning, and so on

[Rish et al, ICML 2008], ongoing work

Our Goal: Interpretable Multivariate Predictive Models

Sparse regression (LASSO, Elastic Net)
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Example: Pain Perception Studies

Data from

[Baliki, Geha, Apkarian 2008]

14 healthy subjects presented with painful thermal stimuli while 

in fMRI scanner, and asked to rate their pain level (using a 

finger-span device).

Where are pain-related brain areas?  

Can we predict pain perception and/or stimulus from fMRI? 



 subjects play a videogame in a scanner

Example:  Videogame Playing  (PBAIC07)   

 24 continuous response variables        
(convolved with HRF function)

• Listening to Instructions 

• Annoyance

• Anxiety

• Looking at faces, etc.

17 minutes

Instructions variable: 

Can we find brain areas involved in this task? 

Can we predict response variables from fMRI? 



Reversing GLMs: Predicting Mental State from Voxels  

y = Xβ  +  noise

fMRI data (“encoding’)
rows – samples (~500)

Columns – voxels (~30,000)

Unknown

parameters

(‘signal’)

Measurements:
mental states, behavior,

tasks or stimuli

fMRI activation image and time-course courtesy of Steve Smith, FMRIB

Find a small number of the most relevant voxels (brain areas) 

Relevant  (jointly) predictive about task (vs. individually correlated)



ISSUE: high-dimensional, small-sample problem

- solutions are overfit to data: poor generalization

- difficult to interpret (determine relevant voxels)

Feature Selection via Sparse Regression: LASSO and Elastic Net

APPROACH:

- LASSO: adds ℓ1-norm regularization 

- selects relevant voxels (sparse solution  many zero coefficients)

- improving LASSO: Elastic Net - sparsity + grouping of correlated variables



Sparse Models Can Accurately Predict  Mental States

Elastic Net: close to 0.8 prediction accuracy for pain ratings [Rish et al, BI-2010], 

as well as for several tasks in PBAIC-07 dataset  [Carroll et al, Neuroimage 2009]

number of voxels
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Pain Rating Task

[Rish et al. 2010]

PBAIC-07 Tasks

[Carroll et al. 2009]

[SPIE Med.Imaging 2012], [Rish et al, BI 2010],   [Carroll et al, Neuroimage 2009]



• Dynamical model (1st order, only 3 parameters) captures inter-

subject variability  in pain response given stimulus

• Stimulus not available? Predict from fMRI, then apply the model!
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Incorporating nonlinear dynamical model into sparse learning (via hidden stimulus variable) 

improves over ‘direct’ sparse regression – due to very high accuracy of analytical model !

[PLoS Comp Bio 2012] 

Even Better Results: Combine Data-Driven and Analytical Models  



But How is Predictive Information Distributed in the Brain?

 Are there multiple sparse models that predict well?

Best sparse solution for PBAIC ‘Instructions’ task

 Whole-brain exploration of relevant areas:  find sparse solution, remove 

its voxels, find another one; repeat until no voxels are left:

Voxels in a sparse solution predict well task-relevant   

 How does the predictive power degrade as more voxels are removed? 

But does this mean ONLY these voxels are relevant? 

Not necessarily – multiple good solutions may exist!

1. Run Elastic net to find one solution of size k = min(1000; # of remaining voxels) 

2. Remove the solution voxels from the data

3. If no more voxels left, stop, otherwise Go to step 1

 Is there a sharp transition between relevant and irrelevant voxels? 



Full-Brain (Holographic) Information Distribution for Pain   

 Surprisingly slow degradation of predictive accuracy!

 No sharp transition between relevant and irrelevant voxels 

Total # of voxels in the first K solutions 

(1000 voxels in each solution) 

0.67
1st solution 0.52

25st solution

(after removing       

24,000 voxels!)
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Pain prediction: subject 6 Pain prediction: avg. over 14 subjects

Total # of voxels in the first K solutions 

(1000 voxels in each solution) 



Highly predictive solutions are spread throughout the brain:

later solutions DO NOT use voxels from same predictive areas as former  ones

Pain-Predictive Solutions Are Spatially Distributed Throughout the Brain



Univariate Correlations DO NOT Properly Capture Voxel Relevance!   

P
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y

 Exponential decay in relevance measured 

by univariate correlation with the task vs.  

linear decay for prediction accuracy

 Still highly predictive solution #25 (0.52 

accuracy vs. 0.67 of the 1st solution) has no 

voxels with individual correlation above 0.1!



Visual Task: Similar Results to Pain

 Similar to pain: linear decay of predictive accuracy (relevance)

 Stronger grouping (larger l2)  faster separation of more relevant 
voxels from less relevant ones
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Visual task: avg. over 14 subjectsVisual task: subject 6

Total # of voxels in the first K solutions 

(1000 voxels in each solution) 

Total # of voxels in the first K solutions 

(1000 voxels in each solution) 



PBAIC Tasks: Results Depend on the Task!

 Solution relevance (accuracy) degrades 
faster than for pain, though for the 2 tasks 
in the top panel decay is still close to linear

 3rd task (instructions): fast (exponential) 
decay; relevant voxels are a small fraction 
of the brain (NO holographic effect)

 Decay is slower for low grouping (small l2),
but this is likely an artifact of the method;
larger l2  are more reliable results



Hypothesis: Simpler Tasks More ‘Localized’ than Complex Ones?

Relatively simple auditory task:

listening to short instructions

More complex task: 

perceiving and rating pain

Sharp transition from highly relevant first  

two solutions (2000 voxels), to practically 

irrelevant remaining voxels (0.2 and lower 

accuracy)

No such sharp transition, slow linear decay 

from best (on average) 0.65 accuracy (1st

solution) to 0.5 (10th sol.) and 0.4 accuracy 

(24th solution, 23,000 voxels removed)



 Main questions: 

 How is task-related information distributed in the brain?

 Is there a sharp boundary between relevant vs. irrelevant brain areas?                                                  

 Approach:  

 exploring  solution space of  multivariate sparse regression, where sparse 

solutions  task-relevant voxel subsets/areas

 Results:

 contrary to traditional univariate correlation (or GLM) approach, multivariate 

sparse regression reveals  full-brain (‘holographic’) spread of task-relevant 

information

 tasks such as pain rating and visual rating seem to involve most of the brain 

rather than just specific areas (involvement measured by predictive accuracy)

 however, not all tasks are holographic (e.g., Instructions in PBAIC dataset is not)

 Hypothesis (requires further empirical investigation):  

 widespread activation (measured by multivariate predictive information) is more 

characteristic of complex tasks such as pain perception; simpler tasks have more 

clear  separation between relevant and irrelevant brain areas.

Sparse Regression and fMRI: Summary 



Part 2:  

Learning (Sparse) Brain Networks



 Our goal: learning full-brain interpretable probabilistic network models 

Overview 

 Problem: full-brain networks, even edge-sparse, are hard to interpret;            

can we identify most relevant nodes/voxels? 

 Proposed approach: variable (node) selection, besides the usual edge 

selection,  using group-Lasso type of penalty

 Application: study of cocaine addicts vs. controls (Goldstein et al., 2007) 

performing a visual attention task with a monetary reward 

 Results: significantly more interpretable and statistically more accurate  

networks that discover most important clusters  of interacting voxels



Markov Networks  (Markov Random Fields) 



Markov random field of jointly Gaussian variables
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Gausian Markov Random Fields (GMRFs)



Maximum Likelihood Estimation of  the Inverse Covariance Matrix



Various algorithms:

• Approximation: LASSO for each node (Meinshausen&Buhlman, 2006)

• Block-coordinate descent: COVSEL (Banerjee et al, 2006),     

glasso (Friedman et al, 2007)

• Projected gradient (Duchi et al, 2008)

• Greedy ascent (Scheinberg and Rish, 2010)

• Alternating Linearization Method (Scheinberg et al, 2011)

• several more recent efficient techniques available

Various sparse structure, besides basic edge-sparsity:

• diagonal structure (Levina et al., 2008)

• block structure for known block-variable assignments (Duchi et al., 2008)

• unknown block-variable assignments (Marlin & Murphy, 2009; Marlin et al., 2009)

• spatial coherence (Honorio et al, 2009)

• common structure among multiple tasks (Honorio et al, 2010)



 Hypothesis:   often, only a relatively few variables are interacting 

with each other, forming network clusters; the rest are not relevant

Variable Selection in Gaussian MRFs 

 Datasets with thousands of variables: 

fMRI, gene expression, stock prices, world weather

 Goal: select these important nodes, and find their interaction pattern

(Honorio et al, AISTATS 2012)



 An additional (last) term to encourage variable selection

log-likelihood
of the dataset

sparseness
prior

our variable-
selection prior

A proxy for the number of 

connected nodes  NP-

hard learning

Variable-Selection Regularizer: Block-Sparsity over Node’s Neighbors

 Variable-selection prior: block l1/lp norm, for 

 We use Block-Coordinate Descent (BCD) on the primal (not dual!):  

a sequence of quadratic subproblems with closed form solutions,

see (Honorio et al, AISTATS 2012)



Cocaine Addiction fMRI Data

 fMRI dataset  previously collected by  (Goldstein et al, 2007)

 15 cocaine addicted subjects and 11 control subjects

 87 scans/TRs (3.5 s), 53x63x46 voxels

 Subsampling to reduce dimensionality: 4x4x4 voxel cubes 869 nodes

 Task: visual attention, with monetary reward



Our methods (LI,L2) outperform competitors, e.g. Meinshausen-Buhlmann (MO,MA),

graphical lasso (GL), scale-free networks (SF) and Tikhonov regularization (TR).

Variable-selection assumption seem to fit the data better than standard sparse GMRFs.

control subjectsaddicted subjects

Results: Better Model Fit (Better Likelihood)

 1/3 of the data was used for training, 1/3 for validation and 1/3 for testing

 Results comparing negative log-likelihood (lower  better) of networks 

learned using various methods:



Blue - positive interactions
red - negative interactions

Our structures involve fewer
connected variables (~50

connected nodes) and have
higher log-likelihood than
graphical lasso).

When performing classification of
cocaine vs. control by using
GMRFs, all methods obtain 84.6%
leave-one-subject-out accuracy

cocaine subjects control subjects
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(Much) Better Interpretability 



Blue - positive interactions
red - negative interactions

cocaine subjects control subjects

Discussion 

In cocaine addicts, as compared to controls, we observe

• increased interactions between the visual cortex (left) and the prefrontal cortex (right) 

• decreased density of interactions between the visual cortex with other brain areas  

Also,  prefrontal cortex is involved in  decision making and reward processing, and abnormal 
monetary processing in the prefrontal cortex was reported in (Goldstein et al, 2009) when 
comparing cocaine addicted individuals to controls.  

Note that the trigger for reward was a visual stimulus and that abnormalities in the visual 
cortex was reported in (Lee et al, 2003) when comparing cocaine abusers to control subjects



Conclusions 

 We introduced variable-selection into sparse Gaussian MRF learning

 Our models fit data better than competitors without variable selection

 Application: study of cocaine addicts vs. controls (Goldstein et al., 2007) 

performing a visual attention task with a monetary reward 

 Results: significantly more interpretable and statistically more accurate  

networks that discover most important clusters  of interacting voxels

 Most importantly, our method produces much more interpretable networks



Part 3:  

Importance of  Good Feature Construction



 Not a localized dysfunction, spatially or mechanistically 

(e.g., unlike depression, epilepsy, stroke, Parkinson’s)

 Hypothesized to be a disconnection syndrome [Wernicke 

1906; Bleuler, 1911; Friston & Frith, 1995]

Our objective: discover schizophrenia ‘biomarkers’, i.e. 

brain activity patterns associated with this disorder

Schizophrenia Study 



 Patient Group (11 subjects)

 Prone to auditory hallucinations

 Native French speakers, right-handed, 3+ yrs. illness

 Normal Group (11 subjects)

8,95 secs

4 s

Response 1 Response 2

Tone: 200ms Silence 750ms Cue 500 ms

Sentence 
3,5 s

96 trials, with 32 sentences in French (native), 32 
sentences in foreign languages, and 32 silence interval 

controls. Two runs.

Experiment: Simple Auditory Task in fMRI Scanner*

*M. Plaze, et al., Schizophrenia Research (2006)

Sentence 
3,5 s



 For each voxel, compute a score (e.g., correlation, or GLM coefficient) 
reflecting how well its activity matches the stimulus sequence  

 Threshold the scores to select only statistically significant ones 

fMRI activation image and time-course 
courtesy of Steve Smith, FMRIB

Standard Approach: Univariate, Task-Related Activations

However, no statistically significant differences were found across groups; 

also, classification based on activation features was close to chance level* 

*G. Cecchi, et al., Neural Information Processing Systems (NIPS-2009)



Network Features Greatly Outperform Task-Activation Features

Functional networks: (thresholded) voxel-level correlation matrices

Explore functional network features 

vs local activations:

No matter which classifier we used, network features outperformed                          

local activations,  thus serving as much better biomarkers.

Best results: specific combination of a degree feature + classifier

Network Extracted

Correlation Matrix

(N
2
=2x10

10
)

Thresholded Matrix

MR 

Signal

M1

V1

PP

1 N
1

N

-0.5

0

0.5

1

1 N
1

N

Voxel degrees + 
GMRF = 86% accuracy

Top cross-voxel correlations 
+ SVM = 93% accuracy

[NIPS 2009] [PLoS ONE2013]



 Functional networks contain  large amount of 

schizophrenia-related information that may not be 

present in task-related activations

 Network properties, as opposed to activations, allow for 

impressively high prediction accuracy (up to 93%) given 

a simple auditory task

 Simplest features (a dozen of top-ranked pairwise 

correlations) are most predictive among all network 

features we tried so far

Schizophrenia and Networks: Summary    
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Beyond fMRI: 

‘Mind-Reading’ from Cheaper Sensors?
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Text Analytics for “Computational Psychiatry”

``Language is a window into the brain’’  - M. Covington

• 93% accuracy discriminating 

schizophrenics  from manics

based on syntactic speech 

graphs [PLoS One, 2012]

• nearly 100% accuracy predicting 

1st psychotic  episode ONE YEAR 

in advance (!!) via coherence and a 

few other features (ongoing work)

• 88% accuracy discriminating ecstasy 

and meth users from controls, using 

semantic features such as proximity 

to ‘empathy’ concept, etc., and graph 

features

[Neuropsychopharmacology, 2014]
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Current Work: Speech Coherence 

Text coherence: 
Currently measured as the angle 
between vector representations of 
consecutive sentences (word vectors 
computed by LSA)  

https://www.youtube.com/watch?v=MXzwAXzUwwEhttps://www.youtube.com/watch?v=6xx_pwu7n-Y

Sober vs. Non-sober

Speech Coherence for Jenna

Phrase-to-phrase Coherence
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[Heisig et al, 2014]



IBM Research

© 2014 IBM Corporation

Current Work: Speech Coherence 

FEATURE                        Example 1                Example 2

Lemmatized-Nodes            352                          350

Lemmatized-Edges            985                        1073

Lemmatized-Loop Len 1        8                              4

Lemmatized-Loop Len 2      44                            64

Lemmatized-Loop Len 3    284                          442

Lemmatized-Loop Len 4   1712                       2956

Coherence:

Phrase to phrase-median  0.2201 0.0049

Alternate phrases-median  0.2895  0.0045

https://www.youtube.com/watch?v=21z30aNO3cAhttps://www.youtube.com/watch?v=e2h-DgYcCtw

[Heisig et al, 2014]

http://www.youtube.com/watch?v=e2h-DgYcCtw
http://www.youtube.com/watch?v=e2h-DgYcCtw
http://www.youtube.com/watch?v=YSJv-2qfDNc
http://www.youtube.com/watch?v=YSJv-2qfDNc
http://www.youtube.com/watch?v=YSJv-2qfDNc
http://www.youtube.com/watch?v=YSJv-2qfDNc
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Goal: Mental State Detection to Improve Mental Function 

Can we avoid such tragic accidents by monitoring driver’s 

mental state and performing preemptive actions in real-time?
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Ongoing Work: Driver Cognitive Load from EEG

Example: Geographic EEG Plot of relaxation index. Merging onto a highway 
requires extra concentration. Sensitive software would not interrupt the driver 
prior to and during  transit of this  area.

EEG: Raw waveform is FFTed to power in frequency 
bands (e.g., from NeuroSky or Muse device)

[Heisig et al, 2014]
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 We used sparse regression (LASSO/Elastic Net) to predict 

Attention and Relaxation from ‘raw’ frequency band EEG data

 Accuracy measure:  correlation between  true and predicted signals

 Encouraging results:

Attention:  0.91 correlation 

best model uses  smoothed normalized Theta band

Relaxation: 0.87 correlation 

best model uses smoothed normalized  hiAlpha,  Theta, MidGamma

 Note that predictive model significantly outperforms the best single-

variable correlations:

 Attention: highest correlation was (negative) 0.59 with sHiAlphaNorm

 Relaxation: highest correlation was (positive) 0.71 with sHiAlphaNorm

Preliminary Results with Sparse Regression



IBM Research

© 2014 IBM Corporation

Sensor 1

Sensor 3

I walked 

into a café ..

Sensor 2

Sensor data

 Text

 Audio

 Video

 EEG signal

 Temperature

 Heart-rate

 Skin-

conductance 

Psycho- and 

physiological

Features

Voice power 

spectrum

Text topic model

Syntactic graph

HRV spectrum

Cheap

data
+

Smart  Analytics:

Machine learning+ 

graph theory

=
Behavioral

prediction
Brain sciences:

Psychology+

Neuroscience

Behavioral 

Phenotype

Baselining

Change-point 

detection

Predictions

Towards “Augmented  Human”: 
Real-Time Mind-Reading from Cheap Sensors
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Links  
Publication page:

http://researcher.watson.ibm.com/researcher/view_person_pubs.php?person=us-rish&t=1

Books:

Practical Applications of Sparse Modeling,  I Rish, GA. Cecchi, A Lozano, A 

Niculescu-Mizil (editors), MIT Press, 2014.
http://www.amazon.com/Practical-Applications-Modeling-Information-Processing/dp/0262027720/ref=sr_1_2?ie=UTF8&qid=1427846244&sr=8-2&keywords=sparse+modeling

I Rish and G Grabarnik. Chapman and Hall/CRC Machine Learning and Pattern 

Recognition, 2014.  
http://www.amazon.com/Sparse-Modeling-Algorithms-Applications-Recognition/dp/1439828695/ref=sr_1_1?ie=UTF8&qid=1427846244&sr=8-1&keywords=sparse+modeling


