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What is machine learning?

ML tries to find regularities within the data

Data is a set of objects (users, images, signals, RNAs, chemical compounds,

credit histories, etc.)

Each object is described by a set of observed variables X and a set of

hidden (latent) variables T’

It is assumed that the values of hidden variables are hard to get and we
have only limited number of objects with known hidden variables, so-called

training set (Xy,., T},

The goal is to find the way of predicting the hidden variables for a new

object given the values of observed
variables by adjusting the weights W of
decision rule.
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Simple example

2-class Classification problem

We know observed variables for the objects within the training set Xy, =
{z;}7,, z; € R?

We know hidden variables for the objects from the training set that are
binary labels T' = {¢;}"_,, t; € {—1,1}

After training we also know the weights W that define separatmg hyperplane
WTQZ + wo § . . .

Now we are able to estimate
binary hidden variable for the
arbitrary observed x

t(x) = sign(WTz 4+ wp)




Conditional and marginal distributions

Just to remind...

e (Conditional distribution

Joint
Conditional = — " . plzly) = p(z,y)
Marginal p(y)

e Product rule: Any joint distribution can be expressed as a product of
one-dimensional conditional distributions

p(z,y, 2) = p(zly, 2)p(y|2)p(2) = p(z|z, y)p(=|y)p(Yy)

e Sum rule: Any marginal distribution can be obtained from the joint distribution
by intergrating out unnessesary variables

p(y) = / p(z, y)dis = / p(yl2)p(2)dz = Eop(yl)



Bayesian Framework

e Treats everything as random variables
e Encodes ignorance in terms of distributions
e Makes use of Bayes Theorem

| Likelihood X Prior p(y|0)p(0)
Post = Oly) =
osherior Evidence .+ plOly) [ p(y|6)p(0)do

e Possible to compute the estimate for arbitrary unknown variable (U)
given observed data (O) and not having any knowledge about latent
variables (L) from the joint distribution p(U, O, L):

~ [pU,0,L)dL
pU10) = [p(U,0, LYdLdU

p(h|d) — PLlh)p(h)

p(d)




Bayesian Learning and Inference

e Establishes joint distribution p(X,T, W) on hidden variables T', observed
variables X and parameters of decision rule W

e Learning: given labeled training data (X4, T}.) find posterior on W:

p(TtT,XtT|W)p(W

B )
p(W | Xy, Tyy) = T p(Tor, Xor W) p(W)dW

e Prior knowledge about W serves as regularization term

e Inference: given observed variables X of new objects find the distribution
on hidden variables

p(T1X, X To) = [ (T W)p(WXey Ty )W



Combining models

e Bayesian framework allows to
combine different models

e We may build complex models
from simpler ones using the latter
as building blocks

e Posterior from one model
may serve as a prior
for the next model and so on




Maximal a posteriori (MAP) learning

e Simplified

probabilistic modeling

e Approximate posteior p(W|Xy,., Ty,-) with a delta function §(W — Wy, p)

e Corresponds to point estimate of W':

Wy p = argmax p(W| Xy, Ty,.) = arg max p(Ty,., X |W)p(W)

e Inference is more simple

p(TIX, Xon, Ty = f (T X, Wp(W| X o, Ton )W ~ p(T|X, Wasp)

A

p(W’XtraTtT)

(W —Wyp)




Exponential class of distributions

e Distribution p(y|f) belongs to exponential class if it can be expressed as
follows
/()

p(yl0) = ==L exp (0" u(y)),

9(0)
where f(y) >0, g(6) >0

e Function g(#) ensures that right-hand expression is a distribution g(6) =

[ f(y)exp (0Tu(y)) dy

e Functions u(y) are sufficient statistics whose values contain all information
that can be extracted from sample about distribution

e Function f(y) can be arbitrary non-negative function



Log-concavity of exponential class

e Consider derivate of log g(#)

dlogg(0) 1 9g(6) 1 9 . -
S = e = o o, | S e u(w)dy =

7 [ 1@ esp@ )y iy = [ p10)u; )y = By o)

e Analogously 826191%%59) = Cov(u;(y),u;(y))

e Thus log g(0) is convex function, consequently

log p(y|6) = 68" u(y) — log g(8) + log f(y)

is concave function of 0



Example: Gaussian distribution

e Standard form of 1-dimensional Gaussian

e Natural form

p(x|d) = exp(91x2 + O>x),

where 6; = —# and 0 = L5

e Hence z and 22 are sufficient statistics and

e Note that there is one-to-one correspondence between (61,6s) and (u, o)



Log-concavity of exponential class

p(y|0) //_\ B

—

T

-—/

e For log-concave distributions maximum likelihood estimation can be done
in an efficient manner

e All discrete distributions and many continuous (Gaussian, Laplace, Gamma,
Dirichlet, Wishart, Beta, Chi-squared, etc.) belong to exponential class



Incomplete likelihood

e Let our likelihood p(X,T|W) belong to exponential class and p(W) is
log-concave w.r.t. W

o If we knew Xy, T}, we would find W, p easily

e Suppose that only Xy, is known. Then we need to find

W, = argmax p(W|Xy,) = arg max log p(W|Xy,) =

arg max (log p(X-|W) + log p(W)) = arg max (logfp(Xm T\W)dT + logp(W)>

e The first term is no longer concave :(
| log p( X |W)

[\ _
~ "




Variational lower bound

p(Xtr,T|W)
1 X W)= |1 X W)q(T)dT' = | 1
o8 (X, W) = [ logp(Xi, W)a(T)aT = [ 1og 2 el

o o p(Xtr7T|W)Q(T) _ o p(Xtr:T|W)
-/ 1gp(T|XM,W)q(T)q”W‘f e I

q(T)
+ [ 1og ()T = £(0.W) + K LGa(T) [p(T Xir W)

A(T)dT =

e KL(q||p) stands for Kullback-Leibler divergence that is a pseudo-
distance between distributions.

e KL-divergence is always non-negative and equals to zero iff both arguments
coinside almost everywhere

e Hence L(q,W) is variational lower bound for the log of incomplete
likelihood

e Idea! Let us maximize L(gq, W) iteratively w.r.t. to W and ¢(7") instead of
maximizing log p( Xy, |W)



EM-algorithm

E-step: L£(q, W;—1) — max,. Equivalent to KL-divergence minimization.
Can be done in an explicit manner

q:(T) = arg mqiﬂ KL(q(T)||lp(T| X7, Wi—1)) = p(T'| Xy, Wi—1)

M-step: L(q, W) — maxyy. Note that

p(XtT‘7 T|W)
q(T)

arg max / q:(T) log p( Xy, T|\W)dT

dl' =

W, = arg max L(q, W) = arg mv[z}x/qt(T) log

corresponds to maximizing convex combination of concave functions, i.e.
concave function

Iterate until convergence

L(q, W) monotonically increases



EM-algorithm

1Og p(XfT|W)

L/




EM-algorithm

log p(X¢-|W)

Fix starting pofnt Wy |




EM-algorithm

log p(X¢-|W)

E-step: Estimate ¢; given |V




EM-algorithm

log p(X¢-|W)

M-step: Find argmaximum of Jower bound W; i




EM-algorithm

E-step: Estimate g2 given |IW;

| |

L(q2, W)




EM-algorithm

1Og p(XfT|W)

M-step: Find argmaximum of Jower bound Wy
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Discrete T

Let t € {1,..., K}, then

p(x|W) = Zp x|k, W)p

= k)

If each p(x|k,W) defines a distribution from exponential class we may

restore a mixture of distributions

Additionally we find to which component each object belongs to — useful

for clustering problems

Classical example: mixture of gaussians
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Mixture of gaussians




Mixture of gaussians
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Mixture of gaussians




Mixture of gaussians
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Mixture of gaussians: formal description

Joint distribution

n mn

where 6 is vector of probabilities p(t; = k) = 6 and (ug,>r) are the
parameters of k" gaussian

W consists of 0, {ur}, {Zk}

We may establish prior distributions on W if needed, e.g. penalizing too
narrow gaussians

We could still perform EM-algorithm for estimating arg max p(W|X4,.)



EM-algorithm for mixture of gaussians

e Probabilistic model

T n

p(X,T|W) = Hp(ici“i; W)p(t:|W) = HN(mi|ﬂtw 2t,)0t,,

e Problem

p(XIW) = 3" p(X, TIW) — max

e L-step
N (4 g, 3)

N S N (@il s S

i (l)
e M-step
mn 1 mn
ng = Z%‘(’f)a HE = e Z%‘(k)ﬂ%’
i=1 i=1

Sy = — D (@i — ) (s — )"

ne — 1
k i—1




Continuous T

Continuous varuables can be regarded as a mixture of a continuum of
distributions

p(z|W) = / P, t{W)dt = / p(elt, Wp(e|W)dt

They are more tricky to perform inference

Need to check conjugacy property in order to perform E-step explicitly

Swissroll data

Typically used for dimension reduction




Example: PCA model

e Consider z € R, t € R?, such that D > d

e Joint distribution

p(X, TIW) = [ [ p(wilts, W)p(t:i| W) = [ [V (il Vi, s> DN (#:]0, 1)

1=1 1=1

e W consists of D X d matrix V and scalar o

e Can use EM-algorithm to find arg maxy p(Xy,.|W)
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Advantages of EM PCA

In PCA the explicit equation for W can be obtained analytically. Then why
use EM?..

e EM updates have complexity O(nDd) instead of O(nD?) in analytic solution
e Can process missing parts in X and present parts in 1T’
e Can determinate d if p(W) is established

e Can be extended to more general models such as mixture of PCA



Mixture of PCA

Two types of latent variables: discrete z € {1,...,K} and continuous
t € R?

Joint distribution

T T

p(X, 2, TIW) = [ [ p(ilts, 20, W)p(t:|W)p(2:| W) = | [ N (@il Ve, ti, 02, DN (£:]0, 1),

W consists of matrices {V}}, scalars {0}, and vector of probabilities
such that p(z; = k) = 0

Can be used for non-linear
dimension reduction




Example: Latent Dirichlet Allocation

e Popular generative model for texts

e Fach text is considered as a mixture of few topics

e Each topic is a distribution over words

Topics

gene 0.04
dna 0.02
genetic 0.01

Topic proportions and
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LDA: formal description

D

p(X, Z,\IJ’(I)) — H ( Qﬁd Hp xdzywzm Zdzygbcl ) Hp wt

d=1
p(1y) ~ D(YP¢| ) Dlstrlbutlon of words in topic ¢
p(da) ~ D(¢q|B8) Distribution of topics in document d
p(zdi|0d) = Pa.»,,  Probability of ith word in document d belongs to topic z4;
p(zai|tzyi) = Y2y, 24, Probability of word wg; belongs to topic zg;

Given: {Xg}i i, o,8,T
Required: p(¥|X) — max

There exist multiple extensions of LDA model which take into account
additional information about the problem (microtexts, sequential data, preferences
on predefined words, etc.) and its modifications to collaborative filtering



General nature of EM-framework

objecty
object,,

Hidden Variables/
Observed variables

e EM algorithm allows processing arbitrary missing data

e May deal with both discrete and continuous variables
e Always converges

e Allows multiple extensions



Extending E-step

E-step requires conjugate distributions to be performed analytically

Otherwise normalization constant cannot be computed

_ p(T X, W)p (X W)
fp(T‘Xt?“a W)p( Xy, |W)dT

p(TlXt'r‘a W)
Recall that
p(T| X4, W) = arg mgxﬁ(q, W) = arg min KL(qg(T)||p(T| X¢r, W)),

where extremum is taken with respect to all possible distributions ¢(7)

What if we limit ourselves with more restricted set of distributions?..



Crisp E-step

e Let’s consider the family of d-functions as a possible distributions ¢(7T')
e It corresponds to point estimates for T’

e It is easy to show that

§(W — Whp) = arg i, K L(q(T)|p(T[ X, W)
q

e Note that M-step is then also simplified

Erlog p(Xir, T|W) = log p(Xir, Trep|W) — max

a




Variational E-step

e Let’s consider the family of factorized distributions ¢(7") = 1—[2;1 q;(t;) as

a possible distributions ¢(7")

e [t is easy to get iterative re-estimation equations

log q;(t;) = Eq\¢, log p(X, T|W) + Const

e In the case of so-called block-conjugacy the expectation is computed analyticaly




Stochastic optimization

New framework for working with big data
Approximate super-fast optimization technique

Allows to optimize function faster than the time needed to compute it in
any given point

Consider a function that is a sum of N > 1 items taken from the same

distribution
N

Fla)=) flzia), z~p(x)

i=1
Then NV f(x;,«) is an unbiased estimate of VF(«)

We may take stochastic gradient step

api1 = o, +, NV f(x;,a)

Under certain conditions such process converges to local maximum



Stochastic EM

Consider huge sample of i.i.d. objects with observed and hidden variables

(X, T) = ({4 évzlv{ti}ij\;l)

Apply stochastic gradient step as M-step

Wht1 = Wy + e, NE7V log p(x;, t;|W)

Then there is no need to computer anything except g(t;)
E-step becomes N times faster
Orders of magnitude more efficient distributions of resourses!

We may perform double stochastic scheme by removing ¢(¢;) with a sample
generated from p(t;| Xy, W,,)



Summary: extensions of basic EM

Extending E-step

e Crisp E-step: MAP estimate of T - no need to compute normalization
constant

e Variational E-step: factorized approximation of p(T'| Xy,., W) - normalization
constant may become tractable

e Monte Carlo E-step: provides with unbiased estimate of p(7T'|X;,., W)
Extending M-step

e Early stop M-step: do not find arg max Er log p(Xy,., T|W) but improve
W value

e Stochastic M-step: make stochastic subgradient step w.r.t. to only one
object (or mini-batch)



Conclusion

In the age of big data many data do not contain full labeling so there are
lots of missing data

The introduction of latent variables often allows to simplify the model

We may enrich the model with prior knowledge (or preferences) about
hidden variables by establishing p(T") and/or p(W)

The understanding of general idea of EM-algorithm allows one to invent
numerious extensions without sacrificing the correctness of EM-framework




Challenge

For those who's interested

* Help Nick Carter to find the criminal who kidnapped lady Thun’s dog
http://cmp.felk.cvut.cz/cmp/courses/recognition/Labs/em/index en.

html



http://cmp.felk.cvut.cz/cmp/courses/recognition/Labs/em/index_en.html

