

Introduction to Reinforcement Learning

Terran Lane < tdrl@google.com > Google, Inc.
20 Jul, 2015

Meet Mac the Mouse

- Mac lives a hard life as a psychology test subject
- Runs around mazes all day, finding food and dodging shocks
- Has to learn how to behave: find food, avoid shocks

The Reinforcement Learning Problem

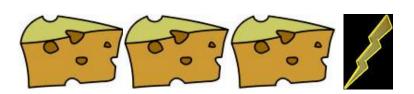
• Learning control: how to act to achieve goals (rewards)

 Supervised learning: mapping from feature vector to output value

RL: mapping from feature vector to action

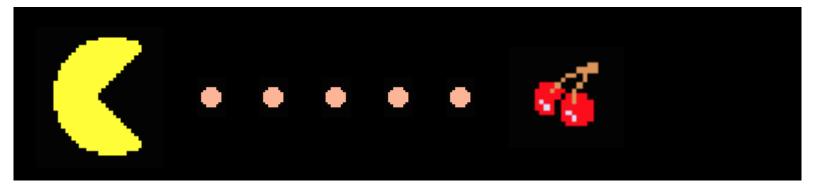
• Catch: delayed rewards

Short-term ("myopic") reward



Long-term reward

VS.



The Price of Greed

Long-term Value

- (Usually) don't want to find best single-step reward
- Want some notion of long-term aggregate reward

Definition: Value function:

$$V := r_1 + r_2 + r_3 + r_4 + \dots$$

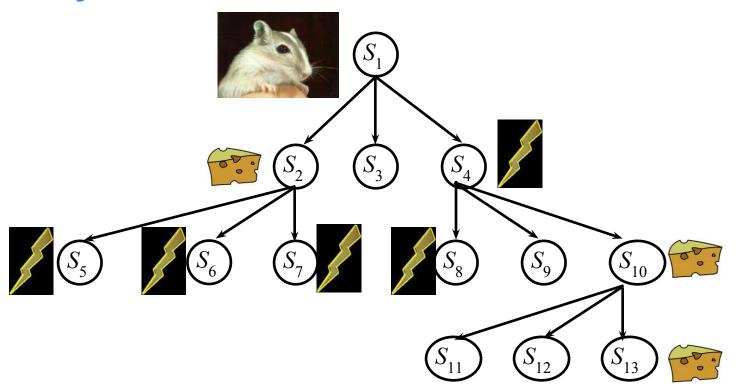
Long-term Value: Mathematical Aside

Infinite sum can diverge (duh)

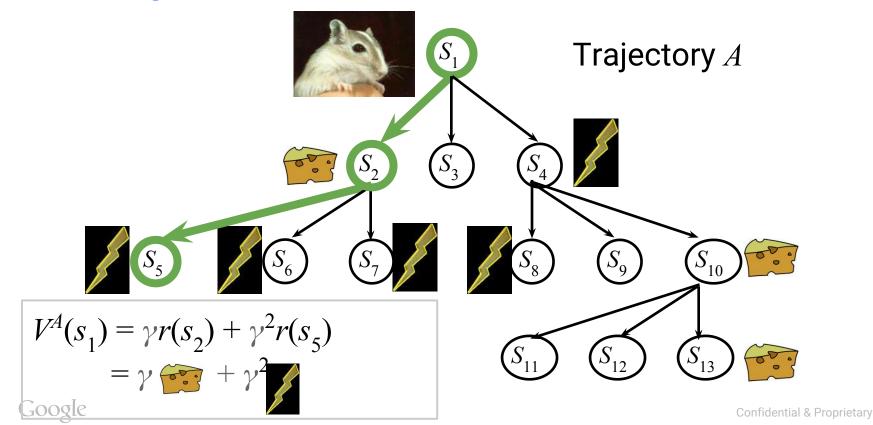
- Three usual "methods" to fix this:
 - Sum only over a fixed, finite horizon: $V := r_1 + r_2 + r_3$
 - Average: $\lim_{T \to \inf} 1/T (V := r_1 + r_2 + r_3 + r_4 + ...)$
 - Infinite discounting:

$$V := \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \gamma^4 r_4 + \dots$$
 for $0 <= \gamma < 1$

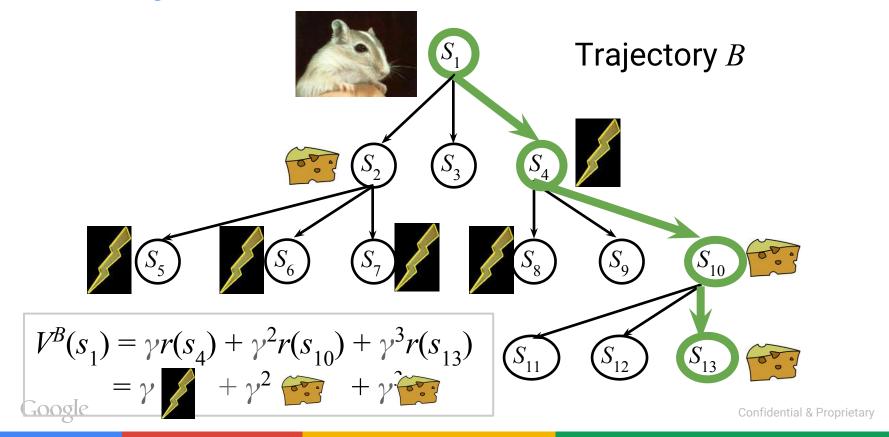
Life Trajectories



Life Trajectories

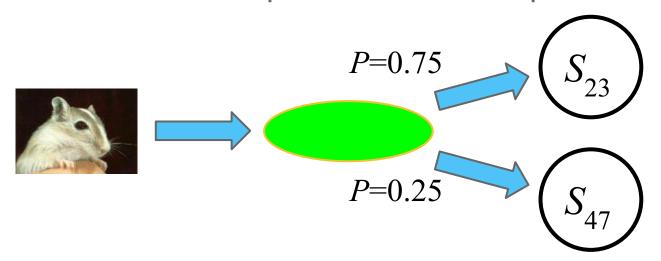


Life Trajectories



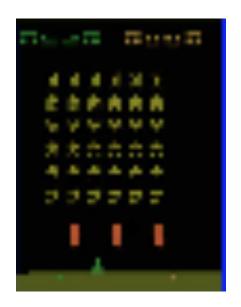
Final Key Element: Uncertainty

- Life is uncertain
- Actions have unpredictable consequences...



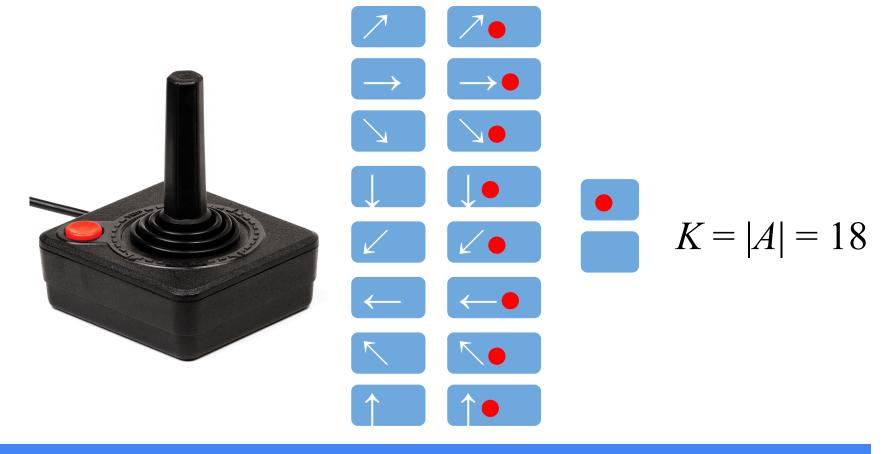
Formalism: The Markov Decision Process (MDP)

- Definition: MDP $M = \langle S, A, T, R \rangle$
- State space: $S = \{s_1, s_2, ..., s_N\}$ (possibly infinite)
- Action space: $A = \{a_1, a_2, ..., a_k\}$ (possibly infinite)
- Transition function: $T: S \times A \times S \rightarrow [0, 1]$
 - Set of Markov chains, indexed by action: $T_a(s_{t+1} \mid s_t)$
- Reward function: $R: S \to \mathbb{R}$



$$|S| = N \approx 2^{84,672}$$

Atari Platform, State space [Mnih et al., Nature(518) 2015.]



Atari Platform, Action space [Mnih et al., Nature(518) 2015.]

Mnih et al.: Final MDP formulation details

- Rewards: change in score
 - Clipped to {-1, 0, +1}
- Transition function: Atari emulator + game

Learning How to Act

- Now we know how to represent the world (MDP)
- How does Mac choose how to act?
- **Definition:** Policy
 - Mapping from states to actions: $\pi: S \to A$
- Learning Problem:

Given experience in MDP M, find a (near) optimal policy π^*

Learning is Hard...

- If you had examples of optimal actions, learning π^* would be trivial
- All you see are histories (a.k.a., trajectories)

$$\circ$$
 $(s_{t1}, a_{t1}, r_{t1}), (s_{t2}, a_{t2}, r_{t2}), (s_{t3}, a_{t3}, r_{t3}), \dots$

- Can calculate value of each trajectory, but...
- Which action(s) helped and which hurt it?
- Credit assignment problem

To Model or Not to Model?

- Two fundamental approaches to RL
- "Model based"
 - Learn $M = \langle S, A, T, R \rangle$ (i.e., learn T and R)
 - Apply a planning algorithm to find optimal π^* for M
 - \blacksquare Poly time in $|S \times A|$
 - \circ See, for example, E^3 algorithm (Kearns & Singh)

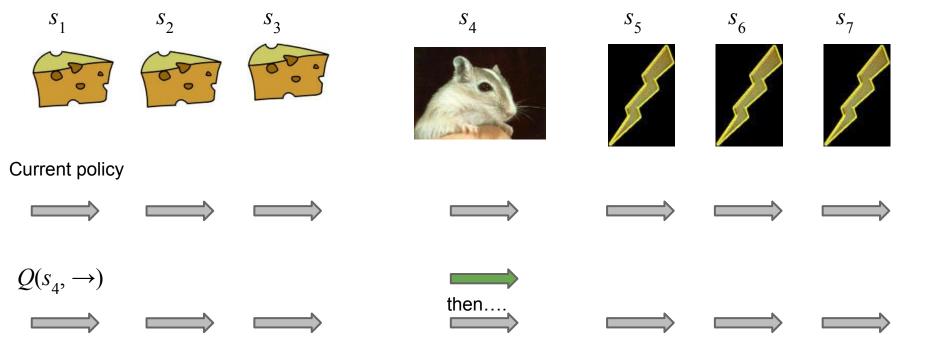
To Model or Not to Model?

- Two fundamental approaches to RL
- "Model free"
 - Skip learning the MDP model itself
 - Learn π^* directly or indirectly
 - Bonus: Don't necessarily need to touch all state/action pairs

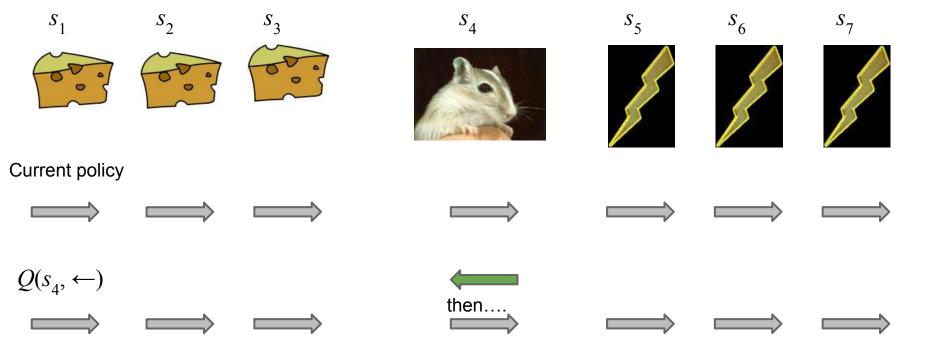
Q

- ullet Possible to learn π directly (see, e.g., policy gradient methods)
- Often use a proxy function: Q
- **Definition:** Q(s, a) is value of taking action a at s and then acting according to current policy thereafter
- Think of it as "testing out" action a

Q example



Q example



Learning Q: Q Learning

• Classic Q learning algorithm:

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha (r_{t+1} + \gamma \max_{a} Q_t(s_{t+1}, a) - Q_t(s_t, a_t))$$

- Form of temporal differencing
- Modifies estimate of Q by "backing up" experience by one step

Breaking it Down

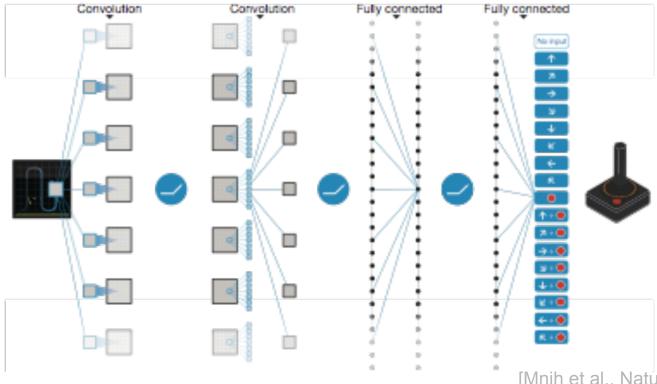
New guess at value of a_r in s_r Old guess at value of a_t in s_t $Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha (r_{t+1} + \gamma \max_{a} Q_t(s_{t+1}, a) - Q_t(s_t, a_t))$ What actually happened when you tried a_{i} from s_{i} Hedging your bets What $Q(s_r, a_r)$ "should" be

Google

Representing Q

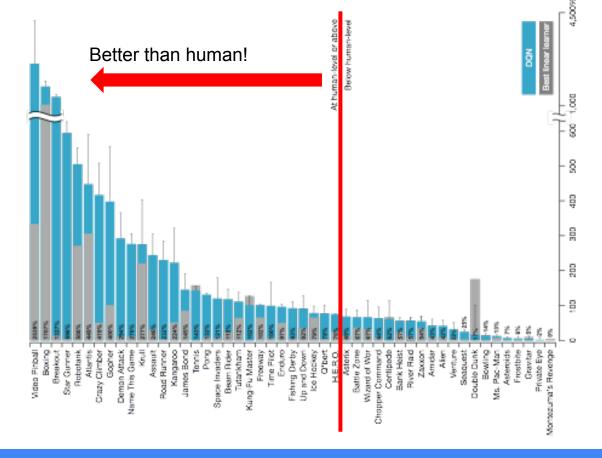
- When $|S \times A|$ is small, can store Q(s, a) as an array
- In Atari world, |A| is small, but |S| is immense
- Enter function approximators
- Replace exact (tabular) Q with approximate $f \approx Q$
- Common choice: Neural network / deep learner
 - C.f., "neuro-dynamic programming"

The Google DeepMind Deep Q Learner



Google

[Mnih et al., Nature(518) 2015.]
Confidential & Proprietary

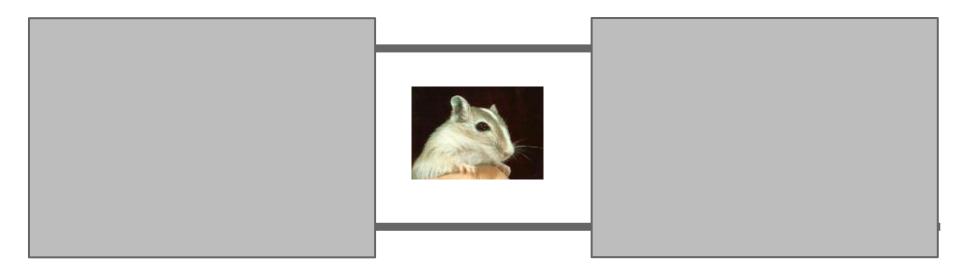


[Mnih et al., Nature(518) 2015.]

Hidden State

- Look at some of the failures
 - Wizard of Wor
 - Ms. Pac Man
 - Montezuma's revenge
 - "Adventure" and "Haunted House" don't even show up in list...
- All have some (or a lot) hidden state
 - Parts of the real game state can't be seen by the agent
 - Don't appear in pixels on screen
 - Darkness, ghosts' direction, states of doors, etc.

Why Hidden State is Hard (intuitively)



Why Hidden State is Hard (intuitively)

Why Hidden State is Hard (mathematically)

- No longer living in a (nice) MDP
- Now we're in a POMDP
 - Partially observable Markov decision process
- MDP, plus observations and observation function

$$P = \langle S, A, T, R, \Omega, O \rangle$$

POMDPs are not your friend

Why POMDPs are Hard

Have to maintain estimate of probability over every

possible hidden state

Belief state

Belief state

Pr = 0.3

Pr = 0.7

Why POMDPs are Hard (cont'd)

- Formally, POMDP is equivalent to an MDP...
- ... where the state space, S, is a probability simplex of dimension related to the bits of hidden state
 - Called the "belief state MDP"
- Problems that are polynomially solvable for (finite) MDP (e.g., planning) become uncomputable
 - Can require unbounded precision in maintaining belief state

Onward and Forward

- Planning and RL in POMDPs is (very big) area of active research
- Lots of progress, but remains super-hard
- Can do real things with, e.g., robot navigation, though
- Sridhar Mahadevan will tell you much more than I could...

Thank you!

Questions?