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Meet Mac the Mouse

e Mac lives a hard life as a psychology test subject

e Runs around mazes all day, finding food and dodging
shocks

e Has to learn how to behave: find food, avoid shocks



The Reinforcement Learning Problem

e Learning control: how to act to achieve goals (rewards)

e Supervised learning: mapping from feature vector to
output value

e RL: mapping from feature vector to action

e Catch: delayed rewards



Short-term (“myopic”) reward
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Long-term reward



The Price of Greed




Long-term Value

e (Usually) don’t want to find best single-step reward
e Want some notion of long-term aggregate reward
e Definition: Value function:

V:=r1+r2+r3+r4+...



Long-term Value: Mathematical Aside

e Infinite sum can diverge (duh)

e Three usual “methods” to fix this:
o Sum only over a fixed, finite horizon: V:=r +r, +7r,
o Average:lim__ 1T (V:=r tr,tr,+r,+..)
o Infinite discounting:
Vi=yr + yzrz + y3r3 + y4r4 + ...
forO<=yp<1



Life Trajectories




Life Trajectories

Trajectory 4

VA(s,) = yr(s,) + y7r(s,)
=y @ + yz%



Life Trajectories

Trajectory B
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Final Key Element: Uncertainty

e Lifeis uncertain
e Actions have unpredictable consequences...

P=0. 75, @
P=0. 25~ ‘




Formalism: The Markov Decision Process (MDP)

e Definition: MDP M=<S 4, T R>
s } (possibly infinite)

1° 2"" N

. a,} (possibly infinite)

e Statespace:S={s,s

e Action space: 4 = la,a,, ...

e Transition function: 7: S X 4 X § — [0, 1]

o Set of Markov chains, indexed by action: T (5., 18)

e Reward function: R: S — R



|S| =N~ 284,672

Atari Platform, State space [Mnih et al., Nature(518) 2015.]
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Atari Platform, Action space [Mnih et al., Nature(518) 2015.]



Mnih et al.: Final MDP formulation details

e Rewards: change in score
o Clippedto{-1,0, +1}
e Transition function: Atari emulator + game



Learning How to Act

e Now we know how to represent the world (MDP)
e How does Mac choose how to act?
e Definition: Policy

o Mapping from states to actions: 77 : § — 4

e Learning Problem:

Given experience in MDP M, find a (near) optimal policy st*



Learning is Hard...

e |f you had examples of optimal actions, learning ;t* would

be trivial
e All you see are histories (a.k.a., trajectories)
© (Stl’ t1° tl) (StZ’atZ’rtZ) (St3’at3’rt3
e Can calculate value of each trajectory, but...
e Which action(s) helped and which hurt it?
e Credit assignment problem



To Model or Not to Model?

e Two fundamental approaches to RL
e “Model based”

o LearnM=<S§, 4, T, R> (i.e., learn Tand R)

o Apply a planning algorithm to find optimal z* for M
m Polytimein|[Sx 4|
o See, for example, E? algorithm (Kearns & Singh)




To Model or Not to Model?

e Two fundamental approaches to RL

e “Model free”

o Skip learning the MDP model itself
o Learn z* directly or indirectly

o Bonus: Don't necessarily need to touch all state/action pairs




Possible to learn st directly (see, e.qg., policy gradient

methods)

Often use a proxy function: O

Definition: O(s, a) is value of taking action a at s and then
acting according to current policy thereafter

Think of it as “testing out” action a



Q example

Current policy

_) =) =
0(s,, —)
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Q example

Current policy
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Learning Q: Q Learning

e Classic Q learning algorithm:

Qt+1(St’ at) - Qt(St’ at) ta (rt+] Ty maXaQt(Stﬂ’a) - Qt(St’ at))

e Form of temporal differencing
e Modifies estimate of Q by “backing up” experience by one
step



Breaking it Down

New guess at value of ¢ in s,
Old guess at value of ¢, in s,

Ons,a) = 0fs,a) + (g™ v max O (85 a) - Ofs,4))

What actually happened when

you tried a, from s,
Hedging your bets

What Q(s,a) “should” be



Representing Q

e When |S§ X 4] is small, can store O(s, a) as an array
e |n Atari world, |4| is small, but |S] is immense

e Enter function approximators

e Replace exact (tabular) Q with approximate /= Q

e Common choice: Neural network / deep learner

o C.f,, “neuro-dynamic programming”



The Google DeepMind Deep Q Learner
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" [Mnih et al., Nature(518) 2015.]
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Hidden State

e Look at some of the failures

o Wizard of Wor
o Ms. Pac Man
o Montezuma’s revenge
m “Adventure” and “Haunted House” don't even show up in list...

e All have some (or a lot) hidden state

o Parts of the real game state can't be seen by the agent
m Don't appear in pixels on screen

o Darkness, ghosts’ direction, states of doors, etc.




Why Hidden State is Hard (intuitively)
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Why Hidden State is Hard (intuitively)
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Why Hidden State is Hard (mathematically)

e No longer living in a (nice) MDP
e Now we're in a POMDP

o Partially observable Markov decision process

e MDP, plus observations and observation function
P=<$§ A4, T R, 2 O>
e POMDPs are not your friend



Why POMDPs are Hard

e Have to maintain estimate of probability over every
possible hidden state Possible Belief

world state state

a Pr=0.3

UUUUU

° 8 Pr=0.7

o Belief state




Why POMDPs are Hard (cont'd)
e Formally, POMDP is equivalent to an MDP...

e .. where the state space, S, is a probability simplex of

dimension related to the bits of hidden state
o Called the “belief state MDP”
e Problems that are polynomially solvable for (finite) MDP

(e.g., planning) become uncomputable

o Can require unbounded precision in maintaining belief state



Onward and Forward

e Planning and RL in POMDPs is (very big) area of active
research

e Lots of progress, but remains super-hard

e Can do real things with, e.g., robot navigation, though

e Sridhar Mahadevan will tell you much more than | could...



Thank you!
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Questions?



